Answer:
Molarity = moles ÷ liters
to get moles of NaBr divide grams of NaBr by its molar mass (mass of Na + mass of Bromine)
Na = 22.989769
Br = 79.904
molar mass of NaBr = 102.893769
6.6g ÷ 102.893769 = 0.064143826 moles of NaBr
0.064143826 moles ÷ 0.60 liters = 0.1069 molar concentration or 11 %
Oceans. Oceans are at present CO2 sinks, and represent the largest active carbon sink on Earth, absorbing more than a quarter of the carbon dioxide that humans put into the air.
Answer:
The strongest force that exists between molecules of Ammonia is <em>Hydrogen Bonding</em>.
Explanation:
Hydrogen Bond Interactions are those interactions which are formed between a partial positive hydrogen atom bonded directly to most electronegative atoms (i.e. F, O and N) of one molecule interacts with the partial negative most electronegative atom of another molecule.
Hence, in ammonia the nitrogen atom being more electronegative element than Hydrogen will be having partial negative charge and making the hydrogen atom partial positive. Therefore, the attraction between these partials charges will be the main force of interaction between ammonia molecules.
Other than Hydrogen bonding interactions ammonia will also experience dipole-dipole attraction and London dispersion forces.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Below is the solution:
pOH = - log (5.75 × 10^−4) = 3.24
<span>pH = 14 - 3.24 = 10.76</span>
Answer:
Pretty sure the answer is B