Answer:
length= √[ (a-c)^2 + (b-d)^2 ]
Step-by-step explanation:
0.012 is the answer!
I hope this helps you out! :D
Answer: 0.75
Step-by-step explanation:
Given : Interval for uniform distribution : [0 minute, 5 minutes]
The probability density function will be :-

The probability that a given class period runs between 50.75 and 51.25 minutes is given by :-
![P(x>1.25)=\int^{5}_{1.25}f(x)\ dx\\\\=(0.2)[x]^{5}_{1.25}\\\\=(0.2)(5-1.25)=0.75](https://tex.z-dn.net/?f=P%28x%3E1.25%29%3D%5Cint%5E%7B5%7D_%7B1.25%7Df%28x%29%5C%20dx%5C%5C%5C%5C%3D%280.2%29%5Bx%5D%5E%7B5%7D_%7B1.25%7D%5C%5C%5C%5C%3D%280.2%29%285-1.25%29%3D0.75)
Hence, the probability that a randomly selected passenger has a waiting time greater than 1.25 minutes = 0.75
Answer: -571
Step-by-step-explanation:
-950 - (-571) = -379
-950 + 571 = -379
Hope this helps :)
The answer is 92,776 because 10 times as much as 70 is 700 which gives the answer for the hundreds position.