Answer:
a = 
Step-by-step explanation:
I think your question is missed of key information, allow me to add in and hope it will fit the original one.:
<em>Suppose ABC is a right triangle with sides a, b, and c and right angle at C. Find the unknown side length using the Pythagorean theorem and then find the values of the six trigonometric functions for angle B. when b=3 and c=4</em>.
My answer:
We will Pythagoras theorem, which states that the sum of squares of two legs of a right triangle is equal to the square of the hypotenuse of right triangle. Because the question says that ABC is a right triangle.

Given that: b=3 and c=4

so a =
We know that tangent relates opposite side of a right triangle with adjacent side.

Please have a look at the attached photos.
Answer:
B would equal -4
Step-by-step explanation:
Answer:
445788
Step-by-step explanation:
OMG too difficult man!!
Thanks to my calculator to solve this hard question
Answer:
b = -8
Step-by-step explanation:
-2b + 9 =25
-9 = -9
-2b = 16
/-2 /-2
b = -8
f(x)= 3x³ - 18x +9
Algebraic identities are algebraic equations that are true regardless of the value of each variable. Additionally, they are employed in the factorization of polynomials. Algebraic identities are employed in this manner for the computation of algebraic expressions and the solution of various polynomials.
Identity I: (a + b)² = a² + 2ab + b²
Identity II: (a – b)² = a² – 2ab + b²
Identity III: a² – b²= (a + b)(a – b)
Identity IV: (x + a)(x + b) = x² + (a + b) x + ab
Identity V: (a + b + c)² = a² + b² + c² + 2ab + 2bc + 2ca
Identity VI: (a + b)³ = a³ + b³ + 3ab (a + b)
Identity VII: (a – b)³ = a³ – b³ – 3ab (a – b)
Identity VIII: a³ + b³ + c³ – 3abc = (a + b + c)(a² + b² + c² – ab – bc – ca)
f(x) = (3x + 6) (x - 3)²
= ( 3x + 6) ( x - 3 )²
= ( 3x + 6)( x² - 6x + 9)
= 3x( x² - 6x + 9) + 6( x² - 6x + 9)
= 3x³ - 6x² + 18x + 6x² - 36x +9
= 3x³ - 18x +9
To learn more about algebraic expansions, refer to brainly.com/question/4344214
#SPJ9