The standard form of a parabola is y=ax²+bx+c
use the three given points to find the three unknown constants a, b, and c:
-2=a+b+c............1
-2=4a+2b+c......... 2
-4=9a+3b+c...........3
equation 2 minus equation 1: 3a+b=0..........4
equation 3 minus equation 2: 5a+b=-2.........5
equation 5 minus equation 4: 2a=-2, so a=-1
plug a=-1 in equation 4: -3+b=0, so b=3
Plug a=-1, b=3 in equation 1: -2=-1+3+c, so c=-4
the parabola is y=-x²+3x-4
double check: when x=1, y=-1+3-4=-2
when x=2, y=-4+6-4=-2
when x=3, y=-9+9-4=-4
Yes.
Answer:
The measure of the arc PJ is 
Step-by-step explanation:
step 1
Find the measure of angle L
we know that
In a inscribed quadrilateral opposite angles are supplementary
so

we have

substitute


step 2
Find the measure of arc KJ
we know that
The inscribed angle measures half that of the arc comprising
so

substitute the values



step 3
Find the measure of arc PJ
we know that
The inscribed angle measures half that of the arc comprising
so

substitute the values



Answer:
Area covered by the fences will be 16.1 unit²
Step-by-step explanation:
Let the first parabola is represented by the function f(x) = 6x²
and second parabola by g(x) = x² + 9
point of intersection of the graphs will be determined when f(x) = g(x)
6x² = x² + 9
5x² = 9
x² = 1.8
x = ± 1.34
Now we will find the area between these curves drawn on the graph.
Area = ![\int_{-1.34}^{1.34}[f(x)-g(x)]dx=\int_{-1.34}^{1.34}[6x^{2}-(x^{2}+9)]dx](https://tex.z-dn.net/?f=%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5Bf%28x%29-g%28x%29%5Ddx%3D%5Cint_%7B-1.34%7D%5E%7B1.34%7D%5B6x%5E%7B2%7D-%28x%5E%7B2%7D%2B9%29%5Ddx)
= 
= ![[\frac{5}{3}x^{3}-9x]_{-1.34}^{1.34}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7Dx%5E%7B3%7D-9x%5D_%7B-1.34%7D%5E%7B1.34%7D)
= ![[\frac{5}{3}(-1.34)^{3}-9(-1.34)-\frac{5}{3}(1.34)^{3}+9(1.34)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B5%7D%7B3%7D%28-1.34%29%5E%7B3%7D-9%28-1.34%29-%5Cfrac%7B5%7D%7B3%7D%281.34%29%5E%7B3%7D%2B9%281.34%29%5D)
= ![[-4.01+12.06-4.01+12.06]](https://tex.z-dn.net/?f=%5B-4.01%2B12.06-4.01%2B12.06%5D)
= 16.1 unit²
Answer:
In mathematics, equality is a relationship between two quantities or, more generally two mathematical expressions, asserting that the quantities have the same value, or that the expressions represent the same mathematical object. The equality between A and B is written A = B, and pronounced A equals B.[1][2] The symbol "=" is called an "equals sign". Two objects that are not equal are said to be distinct.
Step-by-step explanation:
For example:
{\displaystyle x=y}x=y means that x and y denote the same object.[3]
The identity {\displaystyle (x+1)^{2}=x^{2}+2x+1}{\displaystyle (x+1)^{2}=x^{2}+2x+1} means that if x is any number, then the two expressions have the same value. This may also be interpreted as saying that the two sides of the equals sign represent the same function.
{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}}{\displaystyle \{x\mid P(x)\}=\{x\mid Q(x)\}} if and only if {\displaystyle P(x)\Leftrightarrow Q(x).}{\displaystyle P(x)\Leftrightarrow Q(x).} This assertion, which uses set-builder notation, means that if the elements satisfying the property {\displaystyle P(x)}P(x) are the same as the elements satisfying {\displaystyle Q(x),}{\displaystyle Q(x),} then the two uses of the set-builder notation define the same set. This property is often expressed as "two sets that have the same elements are equal." It is one of the usual axioms of set theory, called axiom of extensionality.[4]
Answer:
$7.68
Step-by-step explanation:
4.99/0.65 = $7.68
Hope it helps!