1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Diano4ka-milaya [45]
3 years ago
14

What is the formula for a finite geometric series?

Mathematics
2 answers:
Liono4ka [1.6K]3 years ago
8 0
 An+1 = An * r, so if you know the first term you can find any other term.
allsm [11]3 years ago
4 0
What is it to be that you don't like the
You might be interested in
1.en cada unos de los siguientes monomios identificó el coeficiente y la parte literal , halló el grado y el valor numérico para
Musya8 [376]
I wish I could understand your language I DONT KNOW THOUGH SORRY
4 0
2 years ago
2[3(4+ + 1] - 2<br> Please answer
Mariulka [41]

Answer:

6

Step-by-step explanation:

7 0
3 years ago
 find all possible value of the given variable 
mamaluj [8]
1.\\ \\ h^2+5h=0 \\ \\h(x+5)=0\\ \\x=0 \ \ \ or \ \ \ x+5 =0\ \ |-5\\ \\x+5-5=0-5\\ \\x=0 \ \ \ or \ \ \ x=-5


2.\\ \\ z^2-z=0\\ \\z(x-1)=0\\ \\z=0 \ \ \ or \ \ \ z-1 =0 \ \ | +1\\ \\z-1+1 =0 +1 \\ \\x=0 \ \ \ or \ \ \ z=1


3.\\ \\m^2+13m+40=0 \\ \\a=1 ,\ b=13, \ c=40 \\ \\\Delta =b^2-4ac =13^2-4\cdot 1\cdot 40=169 - 1600=-1431 \\ \\and \ we \ know \ when \ \Delta \ is \ negative, \ theres \ no \solution


4.\\ \\z^2-3z=0 \\ \\ (z-3)=0\\ \\z=0 \ \ \ or \ \ \ z-3 =0\ \ |+3\\ \\ z-3+3=0+3\\ \\z=0 \ \ \ or \ \ \ z=3


5.\\ \\q^2+7q=0 \\ \\q(q+7)=0\\ \\q=0 \ \ \ or \ \ \ q+7 =0\ \ |-7\\ \\q+7-7=0-7\\ \\q=0 \ \ \ or \ \ \ q=-7


6.\\ \\k^2+2k=0\\ \\k(k+2)=0\\ \\k=0 \ \ \ or \ \ \ k+2 =0\ \ |-2\\ \\k+2-2=0-2\\ \\k=0 \ \ \ or \ \ \ k=-2


7. \\ \\ x^2-3x-70=0 \\ \\a=1,\ b=-3, \ c=-70 \\ \\\Delta =b^2-4ac = (-3)^2-4\cdot 1\cdot (-70)= 9+280=289\\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{3-\sqrt{289}}{2 }=\frac{ 3-17}{2}=\frac{-14}{2}=-7

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{3+\sqrt{289}}{2 }=\frac{ 3+17}{2}=\frac{20}{2}=10\\ \\(x+7)(x-10)=0


8.\\ \\q^2+7q-60=0 \\ \\a=1,\ b=7, \ q=-60 \\ \\\Delta =b^2-4ac = 7^2-4\cdot 1\cdot (-60)=49+240=289 \\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-7-\sqrt{289}}{2 }=\frac{ -7-17}{2}=\frac{-24}{2}=-12

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-7+\sqrt{289}}{2 }=\frac{ -7+17}{2}=\frac{ 10}{2}= 5\\ \\(x+12)(x-5)=0


9.\\ \\z^2+9z-36=0 \\ \\a=1,\ b=9, \ q=-36 \\ \\\Delta =b^2-4ac = 9^2-4\cdot 1\cdot (-36)= 81+144=225\\ \\ x_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{-9-\sqrt{225}}{2 }=\frac{ -9-15}{2}=\frac{-24}{2}=-12

x_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{-9+\sqrt{225}}{2 }=\frac{ -9+15}{2}=\frac{6}{2}=3\\ \\(x+11)(x-3)=0


10.\\ \\d^2-13d+22=0 \\ \\a=1,\ b=-13, \ q=22 \\ \\\Delta =b^2-4ac = (-13)^2-4\cdot 1\cdot 22= 169-88=81\\ \\ d_{1}=\frac{-b-\sqrt{\Delta} }{2a}=\frac{13-\sqrt{81}}{2 }=\frac{ 13-9}{2}=\frac{4}{2}=2

d_{2}=\frac{-b+\sqrt{\Delta} }{2a}=\frac{13+\sqrt{81}}{2 }=\frac{ 13+9}{2}=\frac{22}{2}=11\\ \\(d-2)(d-11)=0


7 0
3 years ago
Why is this so harddddd
qaws [65]

Answer:

there is no attachmengt

Step-by-step explanation:

8 0
2 years ago
The value of
marusya05 [52]

\large\underline{\sf{Solution-}}

We have to find out the value of the fraction.

<u>Let us assume that:</u>

\sf \longmapsto x =2 +   \dfrac{1}{2 +  \dfrac{1}{2 +  \dfrac{1}{2 + ... \infty} } }

<u>We can also write it as:</u>

\sf \longmapsto x =2 + \dfrac{1}{x}

\sf \longmapsto x =\dfrac{2x + 1}{x}

\sf \longmapsto  {x}^{2}  =2x + 1

\sf \longmapsto {x}^{2}  - 2x - 1 = 0

<u>Comparing </u>the given <u>equation</u> with <u>ax² + bx + c = 0,</u> we get:

\sf \longmapsto\begin{cases} \sf a =1 \\ \sf b =  - 2 \\ \sf c =  - 1 \end{cases}

<u>By quadratic formula:</u>

\sf \longmapsto x =  \dfrac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a}

\sf \longmapsto x =  \dfrac{2 \pm \sqrt{ {( - 2)}^{2} - 4(1)( - 1)} }{2 \times 1}

\sf \longmapsto x =  \dfrac{2 \pm \sqrt{4 + 4} }{2 \times 1}

\sf \longmapsto x =  \dfrac{2 \pm \sqrt{8} }{2}

\sf \longmapsto x =  \dfrac{2 \pm2 \sqrt{2} }{2}

\sf \longmapsto x = 1 \pm\sqrt{2}

\sf \longmapsto x = \begin{cases} \sf 1  + \sqrt{2} \\ \sf 1 -  \sqrt{2}  \end{cases}

<u>But </u><u>"</u><u>x"</u><u> cannot be negative. Therefore:</u>

\sf :\implies x = 1 + \sqrt{2}

So, the value of the fraction is 1 + √2.

4 0
2 years ago
Other questions:
  • Find the quotient -506/-8
    6·2 answers
  • This is a two step question, so can someone answer the first part please?
    6·2 answers
  • Write the standard form equation that passes through (0,-1) and (-6,-9)
    8·1 answer
  • What is the prime factorization of 12
    5·2 answers
  • What is the area of this shape?
    8·1 answer
  • What is the slope of (12,22) (-20,19)
    15·1 answer
  • How does ABC relate to ABD? How do you know?
    13·1 answer
  • Brandon stated that 0.66 and 2/3 are equivalent. Do you agree? Explain why or why not.
    10·2 answers
  • John has 5 pairs of formal shoes, 2 pairs of traditional shoes, and 4 pairs of casual shoes. What is the probability that John s
    5·1 answer
  • 4. If m23 = 54°, find each measure.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!