Using row 4:
<span>coefficients are: 1, 4, 6, 4, 1 </span>
<span>a^4 + a^3b + a^2b^2 + ab^3 + b^4 </span>
<span>Now adding the coefficients: </span>
<span>1a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + 1b^4 </span>
<span>Substitute a and b: </span>
<span>a = 4x </span>
<span>
b = -3y </span>
<span>1(4x)^4 + 4(4x)^3(-3y) + 6(4x)^2(-3y)^2 + 4(4x)(-3y)^3 + 1(-3y)^4 </span>
<span>Now simplify the above: </span>
<span>256x^4 - 768x^3y + 864x^2y^2 - 432xy^3 + 81y^4 </span>
The triangles can be proven using the SAS postulate. The congruency statement is CAM is congruent to IAM (sorry I don’t know how to type the congruent sign).
Hey there
So 330/11=30
<span>so the total cost is 30 $</span>
3(x - 25) < $100. We're not req'd to solve this.