You just need to foil. 2x times 4x times 2x times 36 times 24 times 4x times 24times 36. then solve.
Answer:
the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
Step-by-step explanation:
From the five randomly selected students ; 160, 175, 163, 149, 153
mean average of the students = 160+175+163+149+153/5
= mean = x-bar = 800/5
mean x-bar = 160
from probability distribution, P(x-bar > 160) = P[ x-bar - miu / SD > 160 -150.8 /3.94]
P( Z>2.34) = from normal Z-distribution table
= 0.0096419
= 0.0096
hence the probability that five randomly selected students will have a mean score that is greater than the mean achieved by the students = 0.0096
where SD = standard deviation = 3.94 and Miu = 150.8
Answer:
The experamental probability that the coin lands on head is 50 %
Step-by-step explanation:
Given:
Experiment:
A coin is Toss
Let the Sample Space be 'S' that is total number of outcomes for a coin has been tossed = { Head, Tail }
∴ n ( S ) = 2
Let A be the event of getting a Head on tossing a coin i.e { Head }
∴ n( A ) = 1
Now,

Substituting the values we get

The experamental probability that the coin lands on head is 50 %
Maria first made an error in step 3.
Maria can correct her error by multiplying 136.49 by 1 over 4 before subtracting 3.0625 from it.