Answer: The electromagnetic waves reach Earth, while the mechanical waves do not.
Explanation:
Answer:
The dominant wavelength of the sun is 
Explanation:
Wien's law is defined as:
(1)
Where
is the maximum wavelength, c is the Wien's constant and T is the temperature.
Therefore,
can be isolated from equation 1.
(2)

Notice that it is necessary to express the Wien's constant in units of meters
⇒ 
Finally, equation 2 can be used:


Hence, the dominant wavelength of the sun is
(distance covered) divided by (time to cover the distance) is SPEED.
(straight-line distance and direction between start-point and end-point) is DISPLACEMENT.
(amount and direction of change in speed) divided by (time for the change) is ACCELERATION.
(amount and direction of change in momentum) divided by (time for the change) OR (mass) times (acceleration) is FORCE.
It is wave front
That’s the answer
Potential difference required in an electron microscope to give an electron wavelength of 4. 5 nm will be 0.063 V.
The difference in potential between two points that represents the work involved or the energy released in the transfer of a unit quantity of electricity from one point to the other is called potential difference.
The wavelength of an electron is calculated for a given energy (accelerating voltage) by using the de Broglie relation between the momentum p and the wavelength λ of an electron
lambda = 4.5 nm = 4.5 *
m
h =
J s
e = 1.6 *
C
m = 9.1 *
kg
Energy = eV
lambda = h /
= h /
=
/ (2m (eV))
V =
/ (2 m e
)
V =
/ 2 * 9.1 *
* 1.6 *
* 
V = 0.063 V
To learn more about wavelength of an electron here
brainly.com/question/17295250
#SPJ4