Answer:
4.3 * 10 N
Explanation:
To calculate torque, we multiply the distance from the pivot by the perpendicular (the part of the force that acts at right angles to the displacement vector) component of the force to the displacement vector from the pivot.
torque = distance from pivot * perpendicular force
170 Nm= 0.4 m * F
F = 425 N = 4.3 * 10 N rounded off to two significant figures
The acceleration of the runner in the given time is 2.06m/s².
Given the data in the question;
Since the runner begins from rest,
- Initial velocity;

- Final velocity;

- Time elapsed;

Acceleration of the runner; 
<h3>Velocity and Acceleration</h3>
Velocity is the speed at which an object moves in a particular direction.
Acceleration is simply the rate of change of the velocity of a particle or object with respect to time. Now, we can see the relationship from the First Equation of Motion

Where v is final velocity, u is initial velocity, a is acceleration and t is time elapsed.
To determine the acceleration of the runner, we substitute our given values into the equation above.

Therefore, the acceleration of the runner in the given time is 2.06m/s².
Learn more about Equations of Motion: brainly.com/question/18486505
Answer:
354.72 m/s
Explanation:
= mass of lead bullet
= specific heat of lead = 128 J/(kg °C)
= Latent heat of fusion of lead = 24500 J/kg
= initial temperature = 27.4 °C
= final temperature = melting point of lead = 327.5 °C
= Speed of lead bullet
Using conservation of energy
Kinetic energy of bullet = Heat required for change of temperature + Heat of melting

The number of times a standard quantity is present in the given physical quantity is called magnitude of a physical quantity