1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
methyl orange, methyl red,phenoptalin, merhy red
Explanation:
all this following are indicators use to check the end point of a reaction
The work done by
along the given path <em>C</em> from <em>A</em> to <em>B</em> is given by the line integral,

I assume the path itself is a line segment, which can be parameterized by

with 0 ≤ <em>t</em> ≤ 1. Then the work performed by <em>F</em> along <em>C</em> is
![\displaystyle \int_0^1 \left(6x(t)^3\,\vec\imath-4y(t)\,\vec\jmath\right)\cdot\frac{\mathrm d}{\mathrm dt}\left[x(t)\,\vec\imath + y(t)\,\vec\jmath\right]\,\mathrm dt \\\\ = \int_0^1 (288(3t-1)^3-8(2t+5)) \,\mathrm dt = \boxed{312}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint_0%5E1%20%5Cleft%286x%28t%29%5E3%5C%2C%5Cvec%5Cimath-4y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%29%5Ccdot%5Cfrac%7B%5Cmathrm%20d%7D%7B%5Cmathrm%20dt%7D%5Cleft%5Bx%28t%29%5C%2C%5Cvec%5Cimath%20%2B%20y%28t%29%5C%2C%5Cvec%5Cjmath%5Cright%5D%5C%2C%5Cmathrm%20dt%20%5C%5C%5C%5C%20%3D%20%5Cint_0%5E1%20%28288%283t-1%29%5E3-8%282t%2B5%29%29%20%5C%2C%5Cmathrm%20dt%20%3D%20%5Cboxed%7B312%7D)
Answer: As per the question, a ray of light is incident on a surface and it is partly reflected and refracted. The incident light is an unpolarised light. The reflected light is partially polarised.
If the angle of incidence becomes equal to the Brester angle (polarising angle), then the reflected light is completely plane polarised.
Answer:

Explanation:
Given

Required
Rewrite using scientific notation
The format of a number in scientific notation is

Where 
So the given parameter can be rewritten as

Express as a power of 10

Hence, the equivalent of the mass of the sun in scientific notation is:
