Could you send the picture so I could help please :)
Answer: -(x + 3)^2 = 3
Explanation:
-x^2 - 6x + 6 = 0
-x^2 - 6x = -6
-x^2 - 6x + 9 = -6 + 9
-(x + 3)^2 = 3
Answer:
Parallel
Step-by-step explanation:
Parallel lines have the same slope but different y-intercepts. If you multiply the top equation by 2, you get:
2(12x + 4y = 16)
24x + 8y = 32
This shows that both lines have the same slope, but then you find the y-intercepts, they are different:
1st equation y-int = 4
2nd equation y-int = 9/2 or 4.5
Answer:
The original height of the tree is 18 m.
Step-by-step explanation:
Please see attached photo for explanation.
From the diagram, we shall determine the value of 'x'. This can be obtained by using the pythagoras theory as follow:
x² = 5² + 12²
x² = 25 + 144
x² = 169
Take the square root of both side
x = √169
x = 13 m
Finally, we shall determine the original height of the tree. This can be obtained as follow.
From the question given above, the tree was broken from a height of 5 m from the ground which form a right angle triangle with x being the Hypothenus as illustrated in the diagram.
Thus, the original height of the will be the sum of 5 and x i.e
Height = 5 + x
x = 13 m
Height = 5 + 13
Height = 18 m
Therefore, the original height of the tree is 18 m.
Answer:
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086
Step-by-step explanation:
Given;
Confidence interval CI = (a,b) = (0.036, 0.086)
Lower bound a = 0.036
Upper bound b = 0.086
To express in the form;
p-e< p < p+e
Where;
p = mean Proportion
and
e = margin of error
The mean p =( lower bound + higher bound)/2
p = (a+b)/2
Substituting the values;
p = (0.036+0.086)/2
Mean Proportion p = 0.061
The margin of error e = (b-a)/2
Substituting the given values;
e = (0.086-0.036)/2
e = 0.025
Re-writing in the stated form, with p = 0.061 and e = 0.025
p-e< p < p+e
(0.061 - 0.025) < 0.061 < (0.061 + 0.025)
0.036 < 0.061 < 0.086