Given that (p - 1/p) = 4, the value of p² + 1/p² is 18. Detail below
<h3>Data obtained from the questio</h3>
- (p - 1/p) = 4
- p² + 1/p² = ?
<h3>How to determine the value of p² + 1/p²</h3>
(p - 1/p) = 4
Square both sides
(p - 1/p)² = (4)²
(p - 1/p)² = 16 ....(1)
Recall
(a - b)² = a² + b² - 2ab
Thus,
(p - 1/p)² = p² + 1/p² - (2 × p × 1/p)
(p - 1/p)² = p² + 1/p² - 2
From equation (1) above,
(p - 1/p)² = 16
Therefore,
p² + 1/p² - 2 = 16
Rearrange
p² + 1/p² = 16 + 2
p² + 1/p² = 18
Thus, the value of p² + 1/p² is 18
Learn more about algebra:
brainly.com/question/953809
#SPJ1
Answer:
You could just replace all the given possible values of k in the inequality and see which ones are solutions, but let's solve this in a more interesting way:
First, remember how the absolute value works:
IxI = x if x ≥ 0
IxI = -x if x ≤ 0
Then if we have something like:
IxI < B
We can rewrite this as
-B < x < B
Now let's answer the question, here we have the inequality:
I-k -2I < 18
Then we can rewrite this as:
-18 < (-k - 2) < 18
Now let's isolate k:
first, we can add 2 in the 3 parts of the inequality:
-18 + 2 < -k - 2 + 2 < 18 + 2
-16 < -k < 20
Now we can multiply all sides by -1, remember that this also changes the direction of the signs, then:
-1*-16 > -1*-k > -1*20
16 > k > -20
Then k can be any value between these two limits.
So the correct options (from the given ones) are:
k = -16
k = -8
k = 0
Answer:
(21, 17 )
Step-by-step explanation:
Using the midpoint formula and equating to the coordinates of the midpoint.
Let endpoint 2 have coordinates (x, y ), then
0.5(x - 3) = 9 ( multiply both sides by 2 )
x - 3 = 18 ( add 3 to both sides )
x = 21
and
0.5(y - 5) = 6 ( multiply both sides by 2 )
y - 5 = 12 ( add 5 to both sides )
y = 17
endpoint 2 = (21, 17 )
Very easy:
Common denominator:
-5/10w - 3/5 = 2/10w
- 3/5 = 7/10w
-30 = 35w
-30/35 = w
-6/7 = w
That's how you do it mate ;)