Answer:
A. The coefficient of variation is best used when comparing two data sets that use the same units of measure.
Step-by-step explanation:
The coefficient of variation (CV), is simply the standard deviation (itself a measure of variance or variation) relative to the mean of a distribution.
The coefficient of variation expresses a random variable’s variability in percentage terms. Therefore it is possible, through the coefficient of variation, to compare the variability of data across different samples, especially if the random variables are recorded in different units of measurement (such as cm, kg and minutes).
A coefficient of variation is always interpreted as a percentage. <u>Mathematical representation is:</u>
The coefficient of variation is best used when comparing two data sets that use the same units of measure.
Hence, the option (A) is the correct option.
Answer: 9/10 is the answer.
Answer:
3rd Option
Step-by-step explanation:
Answer:
Step-by-step explanation:
just simplify the LHS first.
You can either multiply 1/5 by (x+3) and then solve
or
multiply both sides by 5 to get rid of 1/5 on LHS
I will multiply by 5
(x+3)= -10x-15 ( 5*1/5(x+3)= -5(2x+3)
now rearrange the equation
x+3=-10x-15
-10x-15-x-3=0
-11x-17=0
-11x=17
x= -17/11