Answer:
r = -12cos(θ)
Step-by-step explanation:
The usual translation can be used:
Putting these relationships into the formula, we have ...
(r·cos(θ) +6)² +(r·sin(θ))² = 36
r²·cos(θ)² +12r·cos(θ) +36 +r²·sin(θ)² = 36
r² +12r·cos(θ) = 0 . . . . subtract 36, use the trig identity cos²+sin²=1
r(r +12cos(θ)) = 0
This has two solutions for r:
r = 0 . . . . . . . . a point at the origin
r = -12cos(θ) . . . the circle of interest
Answer:
2/5
Step-by-step explanation:
please mark brainliest
Answer:
great :) wbu
Step-by-step explanation:
Answer:
Does the answer help you?
If a(n) = (39n^4 -506n^3 + 2341n^2 - 4610n + 3416) / 8 then
<span>a(1) = 85 </span>
<span>a(2) = 17 </span>
<span>a(3) = 19 </span>
<span>a(4) = 4 </span>
<span>a(5) = 2</span>