1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sineoko [7]
3 years ago
14

3(4 - 2x) + 3x 12 + 3x 12 + 6x 12 - 3x 12 - 9x

Mathematics
1 answer:
Vanyuwa [196]3 years ago
3 0
3(4 - 2x) + 3x 12 + 3x 12 + 6x 12 - 3x 12 - 9x
12 - 6x + 3 • 12 + 3 • 12 + 6 • 12 - 3 • 12 - 9x
12 - 6x + 36 + 36 + 72 - 26 - 9x
-9x - 6x + 12 + 36 + 36 + 72 - 26
-15x + 156 - 26
-15x + 130
You might be interested in
Find the minimum or maximum of the function. Describe the domain/range in interval notation y=6x^2-1
Margarita [4]

max is at vertex

in form y=ax^2+bx+c

the x value of the vertex is \frac{-b}{2a}

given, y=6x^2-1

a=6, b=0

the x value of the vertex is -0/(2*6)=0

the y value is y=6(0)^2-1=0-1=-1

so vertex is at (0,-1)

since the value of a is positive, the parabola opens up and the vertex is a minimum value of the function

therefore that value is the smallest value the function can be



domain=numbesr you can use for x

range=numbesr you get out of inputting the domain


domain=all real numbers

range is {y | y≥-1} since y=-1 is the minimum

7 0
2 years ago
William got scores of q sub 1, , and q sub 3 on three quizzes.
USPshnik [31]

Answer:

a. The average is  =(++) .

b. He can use the formula  =−− q sub 3 , equals 3 x minus , q sub 1 , minus , q sub 2. He will need a score of  =()−−= q sub 3 , equals 3 open 90 close minus 85 minus 88 equals 97 on his third quiz.

Step-by-step explanation:

3 0
3 years ago
Find the limit
Lana71 [14]

Step-by-step explanation:

<h3>Appropriate Question :-</h3>

Find the limit

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

On substituting directly x = 1, we get,

\rm \: = \: \sf \dfrac{1-2}{1 - 1}-\dfrac{1}{1 - 3 + 2}

\rm \: = \sf \: \: - \infty \: - \: \infty

which is indeterminant form.

Consider again,

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right]

can be rewritten as

\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 3x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( {x}^{2} - 2x - x + 2)}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x( x(x - 2) - 1(x - 2))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x(x - 1)}-\dfrac{1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ {(x - 2)}^{2} - 1}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 2 - 1)(x - 2 + 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)(x - 1)}{x(x - 2) \: (x - 1))}\right]

\rm \: = \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{ (x - 3)}{x(x - 2)}\right]

\rm \: = \: \sf \: \dfrac{1 - 3}{1 \times (1 - 2)}

\rm \: = \: \sf \: \dfrac{ - 2}{ - 1}

\rm \: = \: \sf \boxed{2}

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \sf {\displaystyle{\lim_{x\to 1}}} \: \left[\dfrac{x-2}{x^2-x}-\dfrac{1}{x^3-3x^2+2x}\right] = 2 \: }}

\rule{190pt}{2pt}

7 0
2 years ago
Read 2 more answers
Find the area of the sector in<br> terms of pi.<br> 120°<br> 24<br> Area = [?] π<br> Enter
Nady [450]
Sector area= theta/360 x πr^2

Radius= 24/2= 12

Sector area= 120/360 x π(12)^2

Final answer :

Sector area = 48π
3 0
2 years ago
Sean used the $1,200 he got from his graduation party to open a savings account. If the account earns 1% interest each month and
Greeley [361]

Answer:

\$1,920

Step-by-step explanation:

we know that

The simple interest formula is equal to

A=P(1+rt)

where

A is the Final Investment Value

P is the Principal amount of money to be invested

r is the rate of interest  

t is Number of Time Periods

in this problem we have

t=5*12=60\ months\\ P=\$1,200\\r=0.01

substitute in the formula above

A=\$1,200(1+0.01*60)

A=\$1,200(1.6)=\$1,920

6 0
2 years ago
Other questions:
  • Write the difference 20 - (-48) as a sum. Then simplify.
    9·1 answer
  • Its coordinate plane plz help
    14·1 answer
  • Find the square root of √25.65 and correct upto 2 decimal places​
    11·1 answer
  • Equation equivalent to r=1+2sin Ø
    12·1 answer
  • Helppppppppppppppppppppppppppppp
    15·2 answers
  • Write an expression that is equivalent to 6(5x+7y)
    12·2 answers
  • Y= 4x +6 (x=3) Substitution
    12·2 answers
  • Help please<br>solve for X​
    14·2 answers
  • is planning a rectangular rose garden. The garden will be 204 roses wide and 18 roses long. He has 3,600 roses. Does he have eno
    7·2 answers
  • Below is the market for funnel cakes at a small community fair.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!