Food starts to move through your GI tract when you eat. When you swallow, your tongue pushes the food into your throat. A small flap of tissue, called the epiglottis, folds over your windpipe to prevent choking and the food passes into your esophagus.
Esophagus. Once you begin swallowing, the process becomes automatic. Your brain signals the muscles of the esophagus and peristalsis begins.
Lower esophageal sphincter. When food reaches the end of your esophagus, a ringlike muscle—called the lower esophageal sphincter —relaxes and lets food pass into your stomach. This sphincter usually stays closed to keep what’s in your stomach from flowing back into your esophagus.
Stomach. After food enters your stomach, the stomach muscles mix the food and liquid with digestive juices. The stomach slowly empties its contents, called chyme, into your small intestine.
Small intestine. The muscles of the small intestine mix food with digestive juices from the pancreas, liver, and intestine, and push the mixture forward for further digestion. The walls of the small intestine absorb water and the digested nutrients into your bloodstream. As peristalsis continues, the waste products of the digestive process move into the large intestine.
Large intestine. Waste products from the digestive process include undigested parts of food, fluid, and older cells from the lining of your GI tract. The large intestine absorbs water and changes the waste from liquid into stool. Peristalsis helps move the stool into your rectum.
Rectum. The lower end of your large intestine, the rectum, stores stool until it pushes stool out of your anus during a bowel movement.
Nucleic Acids are the largest molecule
Answer:
They started to melt
Explanation:
depending on the temperature outside and the length of time they were exposed to the sun they would begin to melt
Answer:
sister chromatids separate and begin to move towards the pole of the cell during anaphase.
Answer:
D
Explanation:
<em>The correct option here would be</em><em> D</em><em>.</em>
The endomembrane system refers to a group of membrane-based organelles whose primary function is to synergistically work together to modify, package, and transport lipids and proteins. The system includes organelles such as the lysosome, the nuclear envelope, the endoplasmic reticulum, and the Golgi apparatus.
For an endomembrane system function involving a protein, the protein would first of all need to be synthesized by the ribosome - the free ones or the ones attached to the rough endoplasmic reticulum. Thereafter, the synthesized protein would then be folded or packaged into transportable vesicles. The vesicles are then received by the Golgi apparatus which further modifies the proteins before transporting them accordingly.
Hence, the correct order of a typical endomembrane system function would be:
- <em>Ribosomes on the RER synthesize proteins.</em>
- <em>Proteins are packaged into transport vesicles.</em>
- <em>Golgi apparatus receives transport vesicles from the RER.</em>
- <em>Proteins are modified by the Golgi apparatus.</em>
- <em>Modified proteins may be secreted from the cell by exocytosis.</em>