Let the given complex number
z = x + ix = 
We have to find the standard form of complex number.
Solution:
∴ x + iy = 
Rationalising numerator part of complex number, we get
x + iy = 
⇒ x + iy = 
Using the algebraic identity:
(a + b)(a - b) =
- 
⇒ x + iy = 
⇒ x + iy =
[ ∵
]
⇒ x + iy =
⇒ x + iy =
⇒ x + iy =
⇒ x + iy = 1 - i
Thus, the given complex number in standard form as "1 - i".
Answer: Option 4
Step-by-step explanation:
(linear pair)
(angle sum in a triangle)
(linear pair)
Answer:
its (-1/2,-5/2),(2,5)
Step-by-step explanation:
Substitute 2x2−3 for y into y=3x−1then solve for x.
Answer:
Step-by-step explanation:
1:3
6:18
9:27
are all equivlent ratios