Answer:
Fg = 98.1 [N]; N = 98.1 [N]; Ff = 39.24 [N]; a = 2.076[m/^2]
Explanation:
To solve this problem, we must make a free body diagram and interpret each of the forces acting on the box. In the attached diagram we can find the free body diagram.
The gravitational force is equal to:
Fg = (10 * 9.81) = 98.1 [N]
Now by summing forces on the Y axis equal to zero, we can find the normal force exerted by the surface.
N - Fg = 0
N = Fg
N = 98.1 [N]
The friction force is defined as the product of normal force by the coefficient of friction.
Ff = N * μ
Ff = 98.1 * 0.4
Ff = 39.24 [N]
By the sum forces on the x-axis equal to the product of mass by acceleration (newton's second law), we can find the value of acceleration.
60 - Ff = m * a
60 - 39.24 = 10 * a
a = 2.076[m/^2]
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
Answer:
I don't really know
Explanation:
I really wanted to help you, but then I realized i didnt know how to
1) In a circular motion, the angular displacement

is given by

where S is the arc length and r is the radius. The problem says that the truck drove for 2600 m, so this corresponds to the total arc length covered by the tire:

. Using the information about the radius,

, we find the total angular displacement:

2) If we put larger tires, with radius

, the angular displacement will be smaller. We can see this by using the same formula. In fact, this time we have: