Explanation:
The autonomic nervous system _____.
A. controls involuntary actions
The nervous system is subdivided into; the central nervous system (CNS), which includes the brain and spinal cord, within the vertebral column; and the peripheral nervous system, which includes nerves that branch into the rest of the body from the brain and spinal cord. Nervous tissue responds to electrical impulses, allowing for communication between different regions of the body.
The peripheral nervous system is further divided into the somatic nervous system responsible for carrying out sensory and motor information between the peripheral nervous system- including sensory organs like the eyes; and central nervous system; and the autonomic nervous system (ANS) which regulates involuntary bodily functions like heartbeat, breathing and blood flow. The ANS is mainly acts unconsciously and affects smooth muscle and internal organs. It is related to homeostasis- where the body maintains a constant internal balance in pH, temperature, blood pressure etc.
Learn more about the autonomic nervous system at brainly.com/question/10386413
Learn more about homeostasis at brainly.com/question/1601808
#LearnWithBrainly
Answer:
If an inhibitory synapse fires at the same time and at the same distance from the initial segment as an excitatory synapse of the same intensity there will be no changes in the potential in the firing zone.
Explanation:
Under normal conditions, the transmembrane potential depends on the ionic charges present in the intracellular and extracellular spaces. The extracellular space load is usually positive and in the cytoplasm is negative.
- <u>Depolarization</u> occurs by opening ion channels that allow sodium to enter the cell, making the intracellular space more positive.
- An opening of potassium channels releases this ion to the extracellular space, leading to <u>hyperpolarization</u>.
An excitatory synapse is one capable of depolarizing a cell and boosting the production of action potential, provided it is capable of reaching the threshold of said potential.
On the other hand, an inhibitory synapse is able to hyperpolarize the cell membrane and prevent an action potential from originating, so that they can inhibit the action of an excitatory synapse.
The interaction between two synapses, one excitatory and one inhibitory, -called synapse summation- will depend on the strength that each of them possesses. In this case, the intensity of both synapses being the same, there will be no changes in the membrane potential in the firing zone.
Learn more:
Excitatory and inhibitory postsynaptic potentials brainly.com/question/3521553
Answer:
colds are cause by viruses
Do you have ansswer choices ?
Scientists start with general observation and then make a hypothesis