The rate of change is simply the derivative of a function with respect to the other variable. In this case the rate of change with respect to x is desired. Therefore
f(x) = x^3 - 3x^2
f'(x) = 3x^2 - 6x
therefore the rate of change of y with respect to x is dy/dx = 3x^2 - 6x
Answer:
(a): <u>x</u><u> </u><u>is</u><u> </u><u>3</u><u> </u><u>and</u><u> </u><u>ky</u><u> </u><u>is</u><u> </u><u>-</u><u>1</u>
<u>(</u><u>b</u><u>)</u><u>:</u><u> </u><u>k</u><u> </u><u>is</u><u> </u><u>-</u><u>2</u>
Step-by-step explanation:
Let: 3x + ky = 8 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em>
x - 2 ky = 5 be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em>
<em> </em>Then multiply <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>a</em><em>)</em><em> </em>by 2:
→ 6x + 2ky = 16, let it be <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em>
Then <em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>c</em><em>)</em><em> </em><em>+</em><em> </em><em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>b</em><em>)</em><em>:</em>
<em>
</em>
<em>T</em><em>h</em><em>e</em><em>n</em><em> </em><em>k</em><em>y</em><em> </em><em>:</em>


The cactus one I think is 0.875
The ANWSER is B hope this helps