Number of neutrons is 121.
Are found in the nucleus.
Answer:
Magnesium is a naturally ubiquitous; (appearing & found evrywhere) element and has three naturally occurring stable isotopes, 24Mg, 25Mg and 26Mg, with relative abundance of 78.99%, 10.00% and 11.01%, respectively.
However, they differ only because a 24Mg atom has 12 neutrons in its nucleus, a 25Mg atom has 13 neutrons, and a 26Mg has 14 neutrons.
Explanation:
Answer: [N2]₀ = 10M and [H2]₀ = 11M
Explanation: To calculate the initial concentration, you would have to set up an ICE table, which is an organized way of tracking known quantities or the ones you want to find. ICE stands for:
I is initial amount;
C is change in concentration;
E is for equilibrium concentration;
For the mixture,
N2 3H2 2NH3
I [N2]₀ [H2]₀ 0
C - x -3x +2x
E [N2]₀ - x =8 [H2]₀ - 3x =5 2x =4
With the product, we can find "x":
2x=4
x=2M
With x=2, find the concentrations:
[N2]₀ - x = 8
[N2]₀ = 10M
[H2]₀ - 3x = 5
[H2]₀ = 11M
The initial concentrations of nitrogen gas [N2] is 10.0 M and of hydrogen gas [H2] is 11.0 M.
Answer:
47.8 moles of H₂O.
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O
Finally, we shall determine the number of mole of water, H₂O, produced by the reaction of 23.9 moles of O₂. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of H₂O.
Therefore, 23.9 moles of O₂ will react to produce = 23.9 × 2 = 47.8 moles of H₂O.
Thus, 47.8 moles of H₂O were obtained from the reaction.