A) moves substances across the cell membrane
Answer:
No cellular energy is needed in the Passive transport.
Explanation:
A movement of atomic molecules and ions throughout the cell membrane is known as passive transport. In this transportation of molecules no cellular energy is used.
As this movement is influenced by the tendency to grow as entropy, the energy is not in need unlike the active transport. Its rate depends on the permeability of cell membrane. There are four types of passive transport- facilitated diffusion, simple diffusion osmosis or filtration.
Answer:
They probably use aerobic respiration.
Explanation:
A travel distance of 11.500 kilometers in 9 days covered by flying surely requires a lot of energy.
- If cells are fermenting, the ATP (energy) they generate only comes from glycolysis, which produces 2 ATP molecules.
- If they are using aerobic respiration, glucose is completely oxidized to CO₂ through glycolysis and the Citric Acid Cycle, and the electrons enter the electron transport chain to finally reduce oxygen into water. In the complete process, up to 36 ATP molecules are produced.
In sum, aerobic respiration is much more efficient to generate energy than fermentation, so it's probably the main metabolism of the flight muscles in bar-tailed godwits.
Answer:
It requires energy
Explanation:
In the coupled transport system, coupled carriers couple the inward transport of one solute across the membrane to the outward transport of other solutes across the membrane. The tight bonding that occurs between the transport of two solutes allows these carriers to utilize the energy stored in one solute, usually an ion, to facilitate transport of the other. With this way, the free energy released during the movement of an ion down an electrochemical gradient is utilized as the driving force to transport other solutes inwards, against their electrochemical gradient.