Let us recall parallelogram properties, which states that opposite angles of parallelogram are congruent.
We can see from graph that side US is parallel to TR and measure of angle U equals to measure of angle R, therefore, quadrilateral drawn in our given graph is a parallelogram.
Since we know that opposite sides of parallelogram are congruent. In our parallelogram UT=SR and US=TR.
In our triangle STU and triangle TSR side TS=TS by reflexive property of congruence.
Therefore, our triangles are congruent by SSS congruence.
Answer:
31.2
Step-by-step explanation:
i googled it
Answer:
"The product of a rational number and an irrational number is SOMETIMES irrational." If you multiply any irrational number by the rational number zero, the result will be zero, which is rational. Any other situation, however, of a rational times an irrational will be irrational
A better statement would be:
"The product of a non-zero rational number and an irrational number is irrational
The exponent in the equation is the 5.