Answers
b = 2.77 m
A = 43.0°
C = 111.1°
cosine law to find b

b = 2.7708\ m
Find angle A with sine law
![\displaystyle \frac{\sin A}{a} = \frac{\sin B}{b} \\ \\ \sin A = \frac{a \sin B}{b} \\ \\ A = \sin^{-1} \left[ \frac{a \sin B}{b} \right] \\ \\ A = \sin^{-1} \left[ \frac{4.33 \sin 25.9}{2.7708} \right] \\ \\ A = 43.0467020](https://tex.z-dn.net/?f=%5Cdisplaystyle%0A%5Cfrac%7B%5Csin%20A%7D%7Ba%7D%20%3D%20%5Cfrac%7B%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0A%5Csin%20A%20%3D%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7Ba%20%5Csin%20B%7D%7Bb%7D%20%20%5Cright%5D%20%5C%5C%20%5C%5C%0AA%20%3D%20%5Csin%5E%7B-1%7D%20%5Cleft%5B%20%5Cfrac%7B4.33%20%5Csin%2025.9%7D%7B2.7708%7D%20%20%5Cright%5D%20%20%5C%5C%20%5C%5C%0AA%20%3D%2043.0467020)
Find C with angles in triangle sum to 180
A + B + C = 180
C = 180 - A - B
C = 180 - 43.0467020 - 25.9
C = 111.1
Answer:
Step-by-step explanation:
Given that the number of males in the classroom is three more than twice the number of females.
the total number of students is 57
Let x be the no of males then no of females = 
Also we have 3 more than twice no of females as

This equals x

No of males = 39, no of females = 18
Answer:
<u><em>−125a^(11)</em></u>
Step-by-step explanation:
<u><em>(−5a^(2)3a^(5) Then you solve</em></u>
<u><em>=−125a^(11)</em></u>