Step-by-step explanation:
Firstly, we have to find m∠J.
Since all the angles of a Δ equal 180°, angles J, L, and K should have a sum of 180°.
So,
m∠J + m∠L + m∠K = 180°
The diagram shows us that ∠L = 49° and ∠K = 90°, so we plug in those numbers in the equation.
m∠J + 49° + 90° = 180°
Then we simplify
m∠J + 139° = 180°
Subtract 139° to both sides
∠J = 41
Now the other angles.
Since ΔJKL ~ ΔRST, then ∠J ≅ ∠R, ∠K ≅ ∠S, and ∠L ≅ ∠T
Meaning, m∠J = m∠R, m∠K = m∠S, and m∠L = m∠T
Since we know m∠J = 41°, m∠K = 90°, and m∠L = 49° we could plug those in so...
41° = m∠R , 90° = m∠S , and 49° = m∠T
Just plus in x for -3
f(x) = 4(-3)^2 + 3(-3) - 11
f (x) = 4(9) -9 - 11
f(x) = 36 - 20
f(x) = 16
The last pair.
Because 2*4/3*4=8/12
One of them will be given 4 biscuits and the other will be given 24.