Answer:
<h3>The answer is 32 g/cm³</h3>
Explanation:
The density of a substance can be found by using the formula

From the question
mass = 768 g
volume = 24 cm³
We have

We have the final answer as
<h3>32 g/cm³</h3>
Hope this helps you
Answer:
28.75211 kj
Explanation:
Given data:
Mass of iron bar = 841 g
Initial temperature = 84°C
Final temperature = 7°C
Heat released = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
specific heat capacity of iron is 0.444 j/g.°C
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 7°C - 84°C
ΔT = -77°C
By putting values,
Q = 841 g × 0.444 j/g.°C × -77°C
Q = 28752.11 j
In Kj:
28752.11 j × 1 kJ / 1000 J
28.75211 kj
It does<span>, however, change the </span>mass<span> of the nucleus. </span>Adding<span> or removing </span>neutrons<span>from the nucleus are how isotopes are created. Protons carry a positive electrical charge and they alone determine the charge of the nucleus.</span>
Answer:
91.4°C
Explanation:
Gay - Lussac Law => T ∝ P => T = kP => k = T/P with volume (V) and mass (n) constant.
For two different Temperature (T)-Pressure (P) conditions
k₁ = k₂ => T₁/P₁ = T₂/P₂ => T₂ = T₁(P₂/P₁)
T₁ = 55°C = (55 + 273)K = 328K
P₁ = 965 mmHg
T₂ = ?
P₂ = 850 mmHg
T₂ = T₁(P₂/P₁) = 328K(850 mmHg/965 mmHg) = 364K = (364 - 273)°C = 91.4°C