Answer: temperature drops. That’s why it is cold in the mountains and snows there
The correct matches are as follows:
<span>1. Na+ + Cl- → NaCl
</span>D. synthesis reaction<span>
2. CCl4 → C + 2Cl2
</span>A. decomposition reaction<span>
3. H+Cl- + Na+OH- → Na+Cl- + H2O
</span>B. exchange reaction<span>
4. ADP + P + E ATP
</span><span>C. reversible reaction
</span>
Hope this answers the question. Have a nice day.
Answer:
-0.93 °C; 100.26 °C
Step-by-step explanation:
(a) Freezing point depression
The formula for the freezing point depression ΔT_f is
ΔT_f = iKf·b
i is the van’t Hoff factor: the number of moles of particles you get from a solute.
For sucrose,
Sucrose (s) ⟶ sucrose (aq)
1 mole sucrose ⟶ 1 mol particles i = 1
ΔT_f = 1 × 1.86 × 0.50
ΔT_f = 0.93 °C
T_f = T_f° - ΔT_f
T_f = 0.00 – 0.93
T_f = -0.93 °C
(b) Boiling point elevation
The formula for the boiling point elevation ΔTb is
ΔTb = iKb·b
ΔTb = 1 × 0.512 × 0.50
ΔTb = 0.256 °C
Tb = Tb° + ΔTb
Tb = 100.00 + 0.256
Tb = 100.26 °C
One mole of a substance contains 6.02×10∧23 particles,
1 mole of a aluminium contains 27 g
35 g of aluminium contains 35/27 =1.296 moles
Thus, the number of particles will be 1.296 × 6.02 ×10∧23
= 7.804 × 10∧23 particles,
Hence, 35 g of Aluminium contains 7.804 × 10∧23 atoms
Answer:
The metal probably increases reaction rate by either holding reactant molecules in the correct orientation to react or by weakening or breaking bonds in reactant molecules to make them more reactive.
This is an example of heterogeneous catalysis.
It is heterogeneous catalysis because the catalyst is a solid and the reactants are gases. In heterogeneous catalysis, the catalyst is in a different phase than the reactants
Explanation:
got it right :)