Making repeated separations of the various substances in the pitchblende, Marie and Pierre used the Curie electrometer to identify the most radioactive fractions. They thus discovered that two fractions, one containing mostly bismuth and the other containing mostly barium, were strongly radioactive.
<h3>What was surprising about pitchblende?</h3>
Since it was no longer appropriate to call them “uranic rays,” Marie proposed a new name: “radioactivity.”
Even more surprising, Marie next found that a uranium ore called pitchblende contained two powerfully radioactive new elements: polonium, which she named for her native Poland, and radium.
<h3>Why is radium more radioactive than uranium?</h3>
It is 2.7 million times more radioactive than the same molar amount of natural uranium (mostly uranium-238), due to its proportionally shorter half-life.
Learn more about highly radioactive elements here:
<h3>
brainly.com/question/10257016</h3><h3 /><h3>#SPJ4</h3>
Answer:
ΔG=ΔG0+RTlnQ where Q is the ratio of concentrations (or activities) of the products divided by the reactants. Under standard conditions Q=1 and ΔG=ΔG0 . Under equilibrium conditions, Q=K and ΔG=0 so ΔG0=−RTlnK . Then calculate the ΔH and ΔS for the reaction and the rest of the procedure is unchanged.
Explanation:
Answer:
35.9 ml
Explanation:
Start with the balanced equation:
3CuCl2(aq)+2Na3PO4(aq)→Cu3(PO4)2(s)+6NaCl(aq)
This tells us that 3 moles of CuCI2 react with 2 moles Na3PO4-
∴ 1 mole CuCl2 will react with 2/3 moles Na3PO4
We know that concentration = moles/volume i.e:
c= n/v
∴n=c×v
∴nCuCl2=0.107×91.01000=9.737×10−3
I divided by 1000 to convert ml to L
∴nNa3PO4=9.737×10−3×23=6.491×10−3
v=nc=6.491×10−30.181=35.86×10−3L
∴v=35.86ml
Atomic mass Hg = 200.59 u.m.a
200.59 g --------------- 6.02x10²³ atoms
( mass Hg ) ----------- 1.20 x10²² atoms
mass Hg = ( 1.20x10²² ) x 200.59 / 6.02x10²³
mass Hg = 2.407x10²⁴ / 6.02x10²³
= 3.998 g of Hg
hope this helps!
Waves interact with matter in several ways. The interactions occur when waves pass from one medium to another. Besides bouncing back like an echo, waves may bend or spread out when they strike a new medium. These three ways that waves may interact with matter are called reflection, refraction, and diffraction.