Answer is: there is 2,69·10²³ atoms of bromine.
m(CH₂Br₂) = 39,0 g.
n(CH₂Br₂) = m(CH₂Br₂) ÷ M(CH₂Br₂).
n(CH₂Br₂) = 39 g ÷ 173,83 g/mol.
n(CH₂Br₂) = 0,224 mol.
In one molecule of CH₂Br₂, there is two bromine atoms, so:
n(CH₂Br₂) : n(Br) = 1 : 2.
n(Br) = 0,448 mol.
N(Br) = n(Br) · Na.
N(Br) = 0,448 mol · 6,022·10²³ 1/mol.
n(Br) = 2,69·10²³.
Answer:
The answer is 0.023 moles of phosphorus
Explanation:
The 15-15-15 fertilizer is a fertilizer of great versatility, made with nitrogen, phosphorus and potassium, which makes it one of the fertilizers most used for fertilizer in the sowing plant, thus covering the crop requirements from planting. .
This fertilizer consists of 14.25% phosphorus pentoxide (P2O5). Therefore, we have to remove 14.25% at 10 grams of 15-15-15 fertilizer to calculate the moles of phosphorus. As follows:
Grams of P2O5 = 10 g x 0.1425 = 1.425 g
We calculate the molecular weight of phosphorus. We use the periodic table:
Phosphorus molecular weight = 2 x 30.97 = 61.94 g/mol
Now we calculate the moles of phosphorus in the fertilizer:
Phosphorus moles = 1,425 g/61.94 g/mol = 0.023 moles
Answer:
The final product of the reaction is (<em>2S,3S</em>)-2-ethoxy-3-methylpentane.
Explanation:
The given reaction undergoes mechanism in which the nucleophile attacks the backside and it is substituted by the elimination of bromine.
Due to the backside attack of nucleophile , the inverse in stereo-chemistry is observed.
After the substitution of ethoxy group, the configuration is assigned according to the priority it shows clock wise direction(R) - configuration.
When hydrogen faces the front side , it results shows inverse configuration i.e, S- configuration.
The chemical reaction is as follows.
Answer:
32÷5
I'm just tryna get points I'm sorry
goodluck tho❤
True
As the shorter the bond, the stronger it is hence more energy will be required to overcome this bond