<u>Answer:</u>
The equation through (-3, -2) and perpendicular to y = x – 1 is y = -x -5 and option c is correct.
<u>Solution:</u>
Given, line equation is y = x – 1 ⇒ x – y – 1 = 0. And a point is (-3, -2)
We have to find the line equation which is perpendicular to above given line and passing through the given point.
Now, let us find the slope of the given line equation.

We know that, <em>product of slopes of perpendicular lines is -1.
</em>
So, 1
slope of perpendicular line = -1
slope of perpendicular line = -1
Now let us write point slope form for our required line.

y – (-2) = -1(x – (-3))
y + 2 = -1(x + 3)
y + 2 = -x – 3
x + y + 2 + 3 = 0
x + y + 5 = 0
y = -x -5
Hence the equation through (-3, -2) and perpendicular to y = x – 1 is y = -x -5 and option c is correct.
Answer:
The attachment is black
Step-by-step explanation:
:/
I don't know I just need the points Lol sorry
Answer:
The difference in the sample proportions is not statistically significant at 0.05 significance level.
Step-by-step explanation:
Significance level is missing, it is α=0.05
Let p(public) be the proportion of alumni of the public university who attended at least one class reunion
p(private) be the proportion of alumni of the private university who attended at least one class reunion
Hypotheses are:
: p(public) = p(private)
: p(public) ≠ p(private)
The formula for the test statistic is given as:
z=
where
- p1 is the sample proportion of public university students who attended at least one class reunion (
)
- p2 is the sample proportion of private university students who attended at least one class reunion (
)
- p is the pool proportion of p1 and p2 (
)
- n1 is the sample size of the alumni from public university (1311)
- n2 is the sample size of the students from private university (1038)
Then z=
=-0.207
Since p-value of the test statistic is 0.836>0.05 we fail to reject the null hypothesis.
Answer:
42
Step-by-step explanation:
Shanice: 88
Greg: (88 - 4) ÷ 2 = 84 ÷ 2 = 42