Answer:
Solution given:
A triangle PQR is right angled at R, with hypotenuse{h}PQ=80cm
and
base[b]PR=60cm.
perpendicular [P]= QR
<u>by</u><u> </u><u>using</u><u> </u><u>Pythagoras</u><u> </u><u>law</u>
<u>h²</u><u>=</u><u>p²</u><u>+</u><u>b²</u>
80²=QR²+60²
QR²=80²-60²
QR=
QR=20
=52.9=53cm
<u>QR</u><u>=</u><u>5</u><u>3</u><u>c</u><u>m</u><u>.</u>
Alright, so let's make the length x and the width y. 2y=x, and xy=area. 2x+2y=perimeter. Plugging 2y=x into the perimeter equation, we get that 3x=perimeter=126, and x=126/3=42
Length=42ft, width=21ft
Answer:
x is infinite
Step-by-step explanation:
x is a function so
if y=f:x
therefore

21. >
22. Distributive Property
Answer:
Area of triangle RST = 95 in² (Approx)
Step-by-step explanation:
Given:
Side a = 22 in
Side b = 13 in
Perimeter = 50 in
Find:
Area of triangle
Computation:
Side c = Perimeter - Side a - Side b
Side c = 50 - 22 - 13
Side c = 15 in
Heron's formula:
s = Perimeter / 2 = 50 / 2
s = 25 in
Area of triangle = √s(s-a)(s-b)(s-c)
Area of triangle = √25(25-22)(25-12)(25-15)
Area of triangle = √25(3)(13)(10)
Area of triangle = 5√390
Area of triangle = 5 × 19(approx)
Area of triangle RST = 95 in² (Approx)