Answer:
V=25088π vu
Step-by-step explanation:
Because the curves are a function of "y" it is decided to take the axis of rotation as y
, according to the graph 1 the cutoff points of f(y)₁ and f(y)₂ are ±2
f(y)₁ = 7y²-28; f(y)₂=28-7y²
y=0; x=28-0 ⇒ x=28
x=0; 0 = 7y²-28 ⇒ 7y²=28 ⇒ y²= 28/7 =4 ⇒ y=√4 =±2
Knowing that the volume of a solid of revolution V=πR²h, where R²=(r₁-r₂) and h=dy then:
dV=π(7y²-28-(28-7y²))²dy ⇒dV=π(7y²-28-28+7y²)²dy = 4π(7y²-28)²dy
dV=4π(49y⁴-392y²+784)dy integrating on both sides
∫dV=4π∫(49y⁴-392y²+784)dy ⇒ solving ∫(49y⁴-392y²+784)dy
49∫y⁴dy-392∫y²dy+784∫dy =
V=4π(
) evaluated -2≤y≤2, or 2(0≤y≤2), also
⇒ V=25088π vu
I think the answer is 11/14
Answer:
the answer is paragraph 3
The answers are in bold
The shown relative frequencies are 0.18, 0.19, and 0.21, which is pretty close to 0.19 - 0.20. From there you can tell that they are reasonably close to equal.
That means that the probailities are close to uniform and => <span>A uniform propabililty model IS a good model to represent probabilities related to the numbers generated by Claudia's calculator.
Therefore, the theoretical probability that any one number is chosen is likely 0.2.
</span>
Answer:
hope this helps
Step-by-step explanation:
3:39 is not equivalent