<span>1. Fill a beaker or graduated cylinder with enough water to completely immerse the sphere in. 2. Record the baseline initial measurement. 3. Drop the sphere in. 4 <span>Record final measurement.</span></span>
That's false. Animals have mitochondria too. It's responsible for cellular respiration, not photosynthesis.
Answer is: <span>the missing daughter nucleus is rhodium (Rh).</span>
Nuclear
reaction: ¹⁰⁶Ru → ¹⁰⁶Rh + e⁻(electron) +
ve(electron antineutrino).
Beta decay is radioactive decay in which a beta
ray and a neutrino are emitted from an atomic nucleus.There are two types of
beta decay: beta minus and beta plus.
<span>In beta minus decay,
neutron is converted to a proton and an electron and an electron antineutrino.
In beta plus decay, a proton is converted to a neutron and positron and an
electron neutrino, so mass number does not change.</span>
Answer:
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
Consider the following reactions.
4KI + 2CuCl₂ → 2CuI + I₂ + 4KCl
the oxidation state of copper is changed from +2 to +1 so copper get reduced.
CO + H₂O → CO₂ + H₂
the oxidation state of carbon is +2 on reactant side and on product side it becomes +4 so carbon get oxidized.
Na₂CO₃ + H₃PO₄ → Na₂HPO₄ + CO₂ + H₂O
The oxidation state of carbon on reactant side is +4. while on product side is also +4 so it neither oxidized nor reduced.
H₂S + 2NaOH → Na₂S + 2H₂O
The oxidation sate of sulfur is -2 on reactant side and in product side it is also -2 so it neither oxidized nor reduced.
Oxidizing agents:
Oxidizing agents oxidize the other elements and itself gets reduced.
Reducing agents:
Reducing agents reduced the other element are it self gets oxidized
Answer:
0.670 mol
Explanation:
Step 1: Write the balanced reaction for the decomposition of alumina
2 Al₂O₃ ⇒ 4 Al + 3 O₂
Step 2: Calculate the moles corresponding to 34.2 g of Al₂O₃
The molar mass of Al₂O₃ is 101.96 g/mol.
34.2 g × 1 mol/101.96 g = 0.335 mol
Step 3: Calculate the moles of Al produced from 0.335 moles of Al₂O₃
The molar ratio of Al₂O₃ to Al is 2:4.
0.335 mol Al₂O₃ × (4 mol Al/2 mol Al₂O₃) = 0.670 mol Al