Answer:
oxygen is reduced to form water.
Explanation:
Cellular respiration
It is the set of reactions in which the ac. Pyruvic produced by glycolysis is split into CO2 and H2O and 36 ATP are produced. In eukaryotic cells breathing is performed in the mitochondria. It occurs in two stages:
- PIRUVATE OXIDATION
- AC CYCLE TRICARBOXYL
The "problem" with fermentation is that, by using organic molecules as terminal electron acceptors and having to dispose of the resulting product (lactic acid / ethanol) as waste, the potential energy of these compounds is lost.
The alternative solution is to use some non-organic molecule that can accept electrons and thus become a reduced molecule. Oxygen is perfect for this, because after receiving the electrons it combines with two protons, thus becoming the perfect liquid residue for the environment: H2O.
One can solve the problem by using the law of conservation of momentum. The total momentum prior to the collision must be equivalent to the total momentum after the collision, so we have:
m1v1 + m2v2 = m1v1 + m2v2
Here, m1 is 0.4 Kg that is the mass of the ball, u1 is 18 m/s that is the initial velocity of the ball, m2 is 0.2 Kg that is the mass of the bottle, and u2 is 0 that is the initial velocity of the bottle.
v1 is the final velocity of the ball, which is to be determined, and v2 is 25 m/s that is the final velocity of the bottle.
Substituting and rearranging the equation, one can find the final velocity of the ball:
v1 = m1u1 - m2v2 / m1 = (0.4 kg) (18 m/s) - (0.2 Kg) (25 m/s) / 0.4 Kg = 5.5 m/s.
80. Ionic
81. Covalent
82. Metallic
83. Covalent
84. Metallic
85. Covalent
86. Ionic
<span>A theory that has been proven true repeatedly over time and never disproven is called a law</span>