x is less than or equal to -4 or x is greater than or equal to 5
x <= -4 or x>= 5
There is no intersection of both inequalities when we graph it in number line So, we write the interval notation separately for each inequality
for x<=-4 , x starts at -4 and goes to -infinity because we have less than symbol. Also we have = sign so we use square brackets
Interval notation is (-∞ , -4]
for x>= 5 , x starts at 5 and goes to infinity because we have greater than symbol. Also we have = sign so we use square bracket at 5
Interval notation is [5 , ∞)
Now combine both notation by a 'U' symbol Union
(-∞ , -4] U [5 , ∞)
First, I'm going to separate factor the expression inside of the square root.
sqrt[ (2/18) * (x^5) ]
sqrt[ (1/9) * (x^5) ]
We can take the square root of 1/9 easily, because 1 and 9 are both perfect squares. The square root of 1/9 is 1/3.
Looking at the x^5, we can separate it into x^2 * x^2 * x^1. The square root of x^2 is x. So, we now also have an x^2 on the outside because there are two x^2s in our expanded form.
ANSWER: (x^2 * sqrt(x)) / 3
(Option 1)
Hope this helps!
X=-2 is the answer to your question.
This looks like a science lab you have to do on your own
Answer:
M = -2
Step-by-step explanation: