Answer:
<h2>3.6°</h2>
Step-by-step explanation:
The question is incomplete. Here is the complete question.
Find the angle between the given vectors to the nearest tenth of a degree.
u = <8, 7>, v = <9, 7>
we will be using the formula below to calculate the angle between the two vectors;

is the angle between the two vectors.
u = 8i + 7j and v = 9i+7j
u*v = (8i + 7j )*(9i + 7j )
u*v = 8(9) + 7(7)
u*v = 72+49
u*v = 121
|u| = √8²+7²
|u| = √64+49
|u| = √113
|v| = √9²+7²
|v| = √81+49
|v| = √130
Substituting the values into the formula;
121= √113*√130 cos θ
cos θ = 121/121.20
cos θ = 0.998
θ = cos⁻¹0.998
θ = 3.6° (to nearest tenth)
Hence, the angle between the given vectors is 3.6°
Answer:
Here is the formula:
Step-by-step explanation:
FV= future value of the annuity · PMT= amount of the periodic payment · r= annual interest rate written in decimal form · m=number of compounding
(27 mi/hr) x (1 hr / 60 min) = (27/60) (mi/min) = 0.45 mile/minute
Using the same kind of calculation, we can see
that the world record times for other distances
correspond to:
200 meters 23.31 mph
400 meters 20.72 mph
800 meters 17.73 mph
1000 meters 16.95 mph
1500 meters 16.29 mph
1 mile (1,609 meters) 16.13 mph
2,000 meters 15.71 mph
10,000 meters 14.18 mph
30,000 meters 12.89 mph
Marathon (42,195 meters) 13.10 mph
Except for that one figure at the end, for the marathon,
which I can't explain yet and I'll need to investigate further,
it's pretty obvious that a human being, whether running for
his life or for a gold medal, can't keep up the pace indefinitely.
For the problem are you supposed to be solving for x