Answer:
50 hours
Step-by-step explanation:
Given data
Time=40hr
Speed=10km/hr
Let us find the fixed distance first
Speed= distance/Time
10= distance/40
distance= 10*40
distance= 400miles
Now our speed= 8km/h
hence the time is
8= 400/time
time= 400/8
time=50 hours
Hence the time is 50 hours
x + y = 3
- x - x
y = -x + 3
y - y₁ = m(x - x₁)
y - (-1) = -1[x - (-1)]
y + 1 = -1(x + 1)
y + 1 = -1(x) - 1(1)
y + 1 = -x - 1
- 1 - 1
y = -x - 2
The answer is B.
They are not IN a quadrant, but they all border the second quadrant.
Answer:
-1/8
Step-by-step explanation:
lim x approaches -6 (sqrt( 10-x) -4) / (x+6)
Rationalize
(sqrt( 10-x) -4) (sqrt( 10-x) +4)
------------------- * -------------------
(x+6) (sqrt( 10-x) +4)
We know ( a-b) (a+b) = a^2 -b^2
a= ( sqrt(10-x) b = 4
(10-x) -16
-------------------
(x+6) (sqrt( 10-x) +4)
-6-x
-------------------
(x+6) (sqrt( 10-x) +4)
Factor out -1 from the numerator
-1( x+6)
-------------------
(x+6) (sqrt( 10-x) +4)
Cancel x+6 from the numerator and denominator
-1
-------------------
(sqrt( 10-x) +4)
Now take the limit
lim x approaches -6 -1/ (sqrt( 10-x) +4)
-1/ (sqrt( 10- -6) +4)
-1/ (sqrt(16) +4)
-1 /( 4+4)
-1/8