Answer:
64.65% probability of at least one injury commuting to work in the next 20 years
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:

In which
x is the number of sucesses
e = 2.71828 is the Euler number
is the mean in the given interval.
Each day:
Bikes to work with probability 0.4.
If he bikes to work, 0.1 injuries per year.
Walks to work with probability 0.6.
If he walks to work, 0.02 injuries per year.
20 years.
So

Either he suffers no injuries, or he suffer at least one injury. The sum of the probabilities of these events is decimal 1. So

We want
. Then

In which



64.65% probability of at least one injury commuting to work in the next 20 years
Answer:
least to greatest: {61, 61, 61, 178, 179}
Step-by-step explanation:
If the third-largest angle is 61°, the smallest three angles cannot be larger than 183°. Since the total of all angles must be 540°, and the total of the largest two cannot be greater than 179°×2 = 358°, the sum of the smallest three must be at least 540° -358° = 182°.
So, the possible sets of angles with the smallest 3 totaling 182° or 183° are (in degrees) ...
{60, 61, 61, 179, 179} . . . . two modes
(61, 61, 61, 178, 179} . . . . . one mode -- the set you're looking for
Hey what number do you need help with
To find Angle A we use cosine
cos ∅ = adjacent / hypotenuse
From the question
The adjacent is 17
The hypotenuse is 38
So we have
cos A = 17/38
A = cos-¹ 17/38
A = 63.4
<h3>A = 63° to the nearest degree</h3>
To find Angle C we use sine
sin ∅ = opposite / hypotenuse
From the question
The opposite is 17
The hypotenuse is 38
So we have
sin C = 17/38
C = sin-¹ 17/38
C = 26.57
<h3>C = 27° to the nearest degree</h3>
Hope this helps you
Answer:
0
I hope this is the correct answer