1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vaselesa [24]
2 years ago
12

F(x) = 10*(x + 5)²f(5) = ? ​

Mathematics
2 answers:
OLEGan [10]2 years ago
4 0

\\ \rm\hookrightarrow f(x)=10(x+5)^2

\\ \rm\hookrightarrow f(5)

\\ \rm\hookrightarrow 10(5+5)^2

\\ \rm\hookrightarrow 10(10)^2

\\ \rm\hookrightarrow 10^3

\\ \rm\hookrightarrow 1000

sergij07 [2.7K]2 years ago
3 0
<h2>♪Answer : </h2>

»f(x) = 10*(x + 5)²

»f(5) = 10*(5 + 5)²

»f(5) = 10*(10)²

»f(5) = 10*(100)

»f(5) = 1.000✅

You might be interested in
the sales price for a bicycle $315. the original price was first discounted by 5o% and then discounted by 10%. find the original
VMariaS [17]

Answer:

?× ( 1 − 50/ 100 ) × ( 1 − 10/ 100 ) = $ 315            ? = $ 315 /( .5 ) ( .9 ) = $ 700

Step-by-step explanation:

5 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
2 dived by 440 eplain please
dimulka [17.4K]
2/440              Original Mathematical Expression.

1/220               Divide numerator and denominator by 2.

This equals . . .

0.004545454545 repeating

(I just plugged 1/220 into calculator)

Final Answer: 1/220 or 0.004545454545 repeating
6 0
3 years ago
Use 4's and any of the operations: +, -, × and ÷ to write number sentences.
Furkat [3]

Answer:

Step-by-step explanation:

(4x4)÷(4+4) = 2

(4x4)÷ (4 +4) - 4= 4

(4+4)+(4÷ 4)-  4= 5

(4+4)- (4÷4) - 4= 3

8 0
3 years ago
Read 2 more answers
5th grade math. Correct answer will be marked brainliest. What goes in the blank box?
Naddik [55]

Answer:

The answer is 1.97 meters per second

Step-by-step explanation:

Plz give brainliest thanks :) Let me explain you how you do this Housefly is 1.967

The 7 is the tenth and the 6 is the hunderth

1.967 round to 1.96 from the hunderths because the last number is greater than 5 so you round up!

4 0
3 years ago
Read 2 more answers
Other questions:
  • Charlotte has an aquarium in the shape of a rectangular prism. it is 3/4 of a foot high/ 2 and 1/2 feet long, and 1 and 1/4 feet
    10·1 answer
  • the hard drive in Meredith's new computer is 1.5 TB, which has a storage capacity of 1.5 x10^12 bytes. her old computer had a ha
    9·2 answers
  • Steps to divide 125.00 by 7.75
    13·1 answer
  • What is -7 5/12 written as a decimal?
    9·2 answers
  • Select the correct answer. Which statement is true for the numbers 2.5 and -2.5? A. On the horizontal number line, 2.5 and -2.5
    6·1 answer
  • let Ax=b be any consistent system of linear equations, and let x1 be a fixed solution. show that every solution to the system ca
    14·1 answer
  • Please help me. the questions is in the attachments. i will give yall 98 points. Help?
    8·2 answers
  • State the degree of the polynomial -x4
    9·1 answer
  • The mean length of 9 childrens' big finger is 6.8cm.
    15·1 answer
  • I don't fully understand this question if someone could lend me a hand that would be nice...
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!