Given:
Uniform distribution of length of classes between 45.0 to 55.0 minutes.
To determine the probability of selecting a class that runs between 51.5 to 51.75 minutes, find the median of the given upper and lower limit first:
45+55/2 = 50
So the highest number of instances is 50-minute class. If the probability of 50 is 0.5, then the probability of length of class between 51.5 to 51.75 minutes is near 0.5, approximately 0.45. <span />
Answer:
A function that is one to one
Step-by-step explanation:
Each input has one output.
Answer:
Option A
Step-by-step explanation:
the y value has a constant slope of 5 while the other tables have changing slopes
Answer:
(2 x - 3)^2 thus it's True
Step-by-step explanation:
Factor the following:
4 x^2 - 12 x + 9
Factor the quadratic 4 x^2 - 12 x + 9. The coefficient of x^2 is 4 and the constant term is 9. The product of 4 and 9 is 36. The factors of 36 which sum to -12 are -6 and -6. So 4 x^2 - 12 x + 9 = 4 x^2 - 6 x - 6 x + 9 = 2 x (2 x - 3) - 3 (2 x - 3):
2 x (2 x - 3) - 3 (2 x - 3)
Factor 2 x - 3 from 2 x (2 x - 3) - 3 (2 x - 3):
(2 x - 3) (2 x - 3)
(2 x - 3) (2 x - 3) = (2 x - 3)^2:
Answer: (2 x - 3)^2