Let's say that in the beginning he weighted x and at the end he weighted x-y, y being the number of kg he wanted to loose.
first month he lost
y/3
then he lost:
(y-y/3)/3
this is
(2/3y)/3=2/9y
explanation: ((y-y/3) is what he still needed to loose: y minus what he lost already
and then he lost
(y-2/9y-1/3y)/3+3 (the +3 is his additional 3 pounts)
(y-2/9y-1/3y)/3-3=(7/9y-3/9y)/3+3=4/27y+3
it's not just y/3 because each month he lost one third of what the needed to loose at the current time, not in totatl
and the weight at the end of the 3 months was still x-y+3, 3 pounds over his goal weight!
so: x -y/3-2/9y-4/27y-3=x-y+3
we can subtract x from both sides:
-y/3-2/9y-4/27y-3=-y+3
add everything up:
-19/27y=-y+6
which means
-19/27y=-y+6
y-6=19/27y
8/27y=6
4/27y=3
y=20.25
so... that's how much he wanted to loose, but he lost 3 less than that, so 23.25
ps. i hope I didn't make a mistake in counting, let me know if i did. In any case you know HOW to solve it now, try to do the calculations yourself to see if they're correct!
1. 900 gallons will be burned in 3 hours.
2. 50 gallons of gasoline weighs 300 pounds.
3. 2,124 = 59 yards
4. The person weighs 48 pounds
5. 12 people = 6 tablespoons
Isabelle has a leash for her dog in the backyard. The leash is attached to a post which allows thedog to travel in a circle around the post. The leash is 3 feet long. How much of the yard can thedog reach while on the leash?
The average speed would be 600 km/hr.
Step-by-step explanation:
Let the original speed be 'x'
Let the decreased speed be 'x-200'
Distance = 600 km
Time increased by 30 minutes
According to question, it becomes,

So, The average speed would be 600 km/hr.
Givens
y = 2
x = 1
z(the hypotenuse) = √(2^2 + 1^2) = √5
Cos(u) = x value / hypotenuse = 1/√5
Sin(u) = y value / hypotenuse = 2/√5
Solve for sin2u
Sin(2u) = 2*sin(u)*cos(u)
Sin(2u) = 2(
) = 4/5
Solve for cos(2u)
cos(2u) = - sqrt(1 - sin^2(2u))
Cos(2u) = - sqrt(1 - (4/5)^2 )
Cos(2u) = -sqrt(1 - 16/25)
cos(2u) = -sqrt(9/25)
cos(2u) = -3/5
Solve for Tan(2u)
tan(2u) = sin(2u) / cos(2u) = 4/5// - 3/5 = - 0.8/0.6 = - 1.3333 = - 4/3
Notes
One: Notice that you would normally rationalize the denominator, but you don't have to in this case. The formulas are such that they perform the rationalizations themselves.
Two: Notice the sign on the cos(2u). The sin is plus even though the angle (2u) is in the second quadrant. The cos is different. It is about 126 degrees which would make it a negative root (9/25)
Three: If you are uncomfortable with the tan, you could do fractions.
