![arc \ length \ of \ BD = \pi r ( \frac{\angle BPD}{180} ) \\ \\ \angle BPD=\angle APC=92^o \ \ \text{[vertical angle]} \\ \\ arcBD= \pi *8 *\frac{92}{180} \approx 4.09 \pi \ in \approx12.85 in ](https://tex.z-dn.net/?f=arc%20%5C%20length%20%5C%20of%20%5C%20BD%20%3D%20%5Cpi%20r%20%28%20%5Cfrac%7B%5Cangle%20BPD%7D%7B180%7D%20%29%20%20%5C%5C%20%20%5C%5C%20%5Cangle%20BPD%3D%5Cangle%20APC%3D92%5Eo%20%5C%20%5C%20%5Ctext%7B%5Bvertical%20angle%5D%7D%20%5C%5C%20%20%5C%5C%20arcBD%3D%20%5Cpi%20%2A8%20%2A%5Cfrac%7B92%7D%7B180%7D%20%20%5Capprox%204.09%20%5Cpi%20%20%5C%20in%20%5Capprox12.85%20in%0A)
Answer: ≈4.09π in. ≈12.85 in.
Answer:
x=2
Step-by-step explanation:
18−7x=2x
Step 1: Simplif
18−7x=2x
18+−7x=2x
−7x+18=2x
Step 2: Subtract 2x from both sides.
−7x+18−2x=2x−2x
−9x+18=0
Step 3: Subtract 18 from both sides.
−9x+18−18=0−18
−9x=−18
Step 4: Divide both sides by -9.
The distance between any two points is:
d^2=(x2-x1)^2+(y2-y1)^2 so in this case:
d^2=(7-4)^2+(-3-6)^2
d^2=3^2+9^2
d^2=90
d=√90
d=3√10 units
d≈9.49 units (to nearest hundredth of a unit)
Answer:
y=1x or just y=x might be a good line of best fit for this data