Answer: 40000
Step-by-step explanation:
The formula to find the sample size is given by :-
, where p is the prior estimate of the population proportion.
Here we can see that the sample size is inversely proportion withe square of margin of error.
i.e. 
By the equation inverse variation, we have

Given :


Then, we have

Hence, the sample size will now have to be 4000.
We have to use the distance formula between the two points provided
Answer:
dgd hshsgs babahsbvss nansnsjs jajsjsj jahsvzgvss hsbsbsvsvs hshshsg
Answer:
- (1,3) is inside the triangle
Step-by-step explanation:
Orthocenter is the intersection of altitudes.
We'll calculate the slopes of the two sides and their altitudes ad find the intersection.
<h3>Side QR</h3>
- m = (3 - 5)/(4 - (-1)) = -2/5
<u>Perpendicular slope:</u>
<u>Perpendicular line passes through S(-1, -2):</u>
- y - (-2) = 5/2(x - (-1)) ⇒ y = 5/2x + 1/2
<h3>Side RS</h3>
- m = (-2 - 3)/(-1 -4) = -5/-5 = 1
<u>Perpendicular slope:</u>
<u>Perpendicular line passes through Q(-1, 5):</u>
- y - 5 = -(x - (-1)) ⇒ y = -x + 4
The intersection of the two lines is the orthocenter.
<u>Solve the system of equations to get the coordinates of the orthocenter:</u>
- 5/2x + 1/2 = x + 4
- 5x + 1 = -2x + 8
- 7x = 7
- x = 1
<u>Find y-coordinate:</u>
The orthocenter is (1, 3)
If we plot the points, we'll see it is inside the triangle