9514 1404 393
Answer:
- 75 adult tickets
- 125 child tickets
Step-by-step explanation:
Let 'a' represent the number of adult tickets sold. Then (200-a) is the number of child tickets sold, and the revenue is ...
8a +5(200 -a) = 1225
3a = 225 . . . . . . . . . . subtract 1000, simplify
a = 75 . . . . . . . . . . . . .divide by 3
200 -a = 125
75 adult ($8) and 125 child ($5) tickets were sold.
__
<em>Additional comment</em>
The question asked here is "how many tickets did Kay sell?" The second line of your problem statement tells you the answer: "Kay sold 200 tickets ...". We have assumed that you are interested in the breakdown of tickets sold, even though that is not the question that is asked here.
Answer:
Step-by-step explanation:
Keywords:
System of equations, variables, cost, tickets, adults, children.
For this case we must solve a system of equations with two variables represented by the tickets of students and adults of a school production.
We define the variables according to the given table:
a: Number of tickets sold to adults
c: Amount of tickets sold to children.
We then have the following system of equations:
A + c = 67
10a + 5c =440
From the first equation, we clear the value of the variable c:
C = 67 - a
Answer:
The value that could replace c in the table is:
C = 67 - a
Option C is the answer!
Hope it helped u if yes mark me BRAINLIEST!
Tysm! Plz