1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rufina [12.5K]
2 years ago
13

Divide. Write the quotient in lowest terms. 4\dfrac{2}{3} \div 7 =4 3 2 ​ ÷7=4, start fraction, 2, divided by, 3, end fraction,

divided by, 7, equals
Mathematics
1 answer:
velikii [3]2 years ago
3 0

Answer:

\dfrac{2}{3}

Step-by-step explanation:

Given the quotient: 4\dfrac{2}{3} \div 7

Step 1: Write 4\dfrac{2}{3} in improper fraction.

4\dfrac{2}{3}=\dfrac{14}{3}

Therefore:

4\dfrac{2}{3} \div 7=\dfrac{14}{3} \div 7

<u>Step 2:</u> Change the division sign to multiplication by taking the reciprocal of 7

\dfrac{14}{3} \div 7 =\dfrac{14}{3} X\dfrac{1}{7} \\$Simplify\\\\=\dfrac{2}{3}

You might be interested in
Please help! Picture attached. (7th grade)
Hunter-Best [27]
Option B. 2 because 2-8
                                 ------- = -3
                                     2
8 0
3 years ago
Read 2 more answers
The manager of a toothpaste manufacturing company wants to add three new flavored toothpastes for children between the ages
Kryger [21]

Answer:

i think its B.............................

6 0
2 years ago
Tamela feeds her finches 1 cup of food for every three birds in the cage. She writes
FrozenT [24]

Answer:

c=1/3F

Step-by-step explanation:

7 0
3 years ago
Solve these simultaneous equations.<br> 4x – 7y = – 5<br> 3x – 2y = – 7<br> Solution: x=
AlexFokin [52]

Answer:

  1. \huge{x =  -  \frac{5}{4}  +  \frac{7}{4} y}
  2. \huge{x =  -  \frac{7}{3}  +  \frac{2}{3} y}

Step-by-step explanation:

1. 4x - 7y =  - 5

4x =  - 5 + 7y

\boxed{\green{x =  -  \frac{5}{4}  +  \frac{7}{4} y}}

y E R

○○•○○

2. 3x - 2y =  - 7

3x =  - 7 + 2y

\boxed{\green{x =  -  \frac{7}{3}  +  \frac{2}{3} y}}

y E R

5 0
3 years ago
Solve only if you know the solution and show work.
SashulF [63]
\displaystyle\int\frac{\cos x+3\sin x+7}{\cos x+\sin x+1}\,\mathrm dx=\int\mathrm dx+2\int\frac{\sin x+3}{\cos x+\sin x+1}\,\mathrm dx

For the remaining integral, let t=\tan\dfrac x2. Then

\sin x=\sin\left(2\times\dfrac x2\right)=2\sin\dfrac x2\cos\dfrac x2=\dfrac{2t}{1+t^2}
\cos x=\cos\left(2\times\dfrac x2\right)=\cos^2\dfrac x2-\sin^2\dfrac x2=\dfrac{1-t^2}{1+t^2}

and

\mathrm dt=\dfrac12\sec^2\dfrac x2\,\mathrm dx\implies \mathrm dx=2\cos^2\dfrac x2\,\mathrm dt=\dfrac2{1+t^2}\,\mathrm dt

Now the integral is

\displaystyle\int\mathrm dx+2\int\frac{\dfrac{2t}{1+t^2}+3}{\dfrac{1-t^2}{1+t^2}+\dfrac{2t}{1+t^2}+1}\times\frac2{1+t^2}\,\mathrm dt

The first integral is trivial, so we'll focus on the latter one. You have

\displaystyle2\int\frac{2t+3(1+t^2)}{(1-t^2+2t+1+t^2)(1+t^2)}\,\mathrm dt=2\int\frac{3t^2+2t+3}{(1+t)(1+t^2)}\,\mathrm dt

Decompose the integrand into partial fractions:

\dfrac{3t^2+2t+3}{(1+t)(1+t^2)}=\dfrac2{1+t}+\dfrac{1+t}{1+t^2}

so you have

\displaystyle2\int\frac{3t^2+2t+3}{(1+t)(1+t^2)}\,\mathrm dt=4\int\frac{\mathrm dt}{1+t}+2\int\frac{\mathrm dt}{1+t^2}+\int\frac{2t}{1+t^2}\,\mathrm dt

which are all standard integrals. You end up with

\displaystyle\int\mathrm dx+4\int\frac{\mathrm dt}{1+t}+2\int\frac{\mathrm dt}{1+t^2}+\int\frac{2t}{1+t^2}\,\mathrm dt
=x+4\ln|1+t|+2\arctan t+\ln(1+t^2)+C
=x+4\ln\left|1+\tan\dfrac x2\right|+2\arctan\left(\arctan\dfrac x2\right)+\ln\left(1+\tan^2\dfrac x2\right)+C
=2x+4\ln\left|1+\tan\dfrac x2\right|+\ln\left(\sec^2\dfrac x2\right)+C

To try to get the terms to match up with the available answers, let's add and subtract \ln\left|1+\tan\dfrac x2\right| to get

2x+5\ln\left|1+\tan\dfrac x2\right|+\ln\left(\sec^2\dfrac x2\right)-\ln\left|1+\tan\dfrac x2\right|+C
2x+5\ln\left|1+\tan\dfrac x2\right|+\ln\left|\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}\right|+C

which suggests A may be the answer. To make sure this is the case, show that

\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}=\sin x+\cos x+1

You have

\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}=\dfrac1{\cos^2\dfrac x2+\sin\dfrac x2\cos\dfrac x2}
\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}=\dfrac1{\dfrac{1+\cos x}2+\dfrac{\sin x}2}
\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}=\dfrac2{\cos x+\sin x+1}

So in the corresponding term of the antiderivative, you get

\ln\left|\dfrac{\sec^2\dfrac x2}{1+\tan\dfrac x2}\right|=\ln\left|\dfrac2{\cos x+\sin x+1}\right|
=\ln2-\ln|\cos x+\sin x+1|

The \ln2 term gets absorbed into the general constant, and so the antiderivative is indeed given by A,

\displaystyle\int\frac{\cos x+3\sin x+7}{\cos x+\sin x+1}\,\mathrm dx=2x+5\ln\left|1+\tan\dfrac x2\right|-\ln|\cos x+\sin x+1|+C
5 0
2 years ago
Other questions:
  • What is the equation of the line that passes through the point (1,0) and is perpendicular to the line x+5y=30
    8·1 answer
  • 1.
    14·1 answer
  • Write the explicit formula for the geometric sequence below. 6,30,150,175
    5·1 answer
  • A diving board is 12.4 feet above the ground. The bottom of the pool is 16.9 feet below the ground. Choose the equation that rep
    11·2 answers
  • Find the given value of each angle for the following supplementary angles must add up to 180
    5·1 answer
  • Plz help will mark brainliest if correct answer
    10·2 answers
  • PLEASE ANSWER I NEED HELP WITH THIS I WILL MARK YOU AS BRAINLIEST IF YOU ANSWER CORRECTLY​
    10·1 answer
  • Please solve this question faaaast​
    9·1 answer
  • How many one-third cup servings are in 9 cups of strawberries?
    11·1 answer
  • 14x-20x+10x pleaseee helppp!
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!