Answer:

Explanation:
The equation for centripetal acceleration is
.
We know the wheel turns at 45 rpm, which means 0.75 revolutions per second (dividing by 60), so our frequency is f=0.75Hz, which is the inverse of the period T.
Our velocity is the relation between the distance traveled and the time taken, so is the relation between the circumference
and the period T, then we have:

Putting all together:

Answer:
a = - 50 [m/s²]
Explanation:
To solve this problem we simply have to replace the values supplied in the given equation.
Vf = final velocity = 0.5 [m/s]
Vi = initial velocity = 10 [m/s]
s = distance = 100 [m]
a = acceleration [m/s²]
Now replacing we have:
![(0.5)^{2}-(10)^{2} = 2*a*(100)\\0.25-10000=200*a\\200*a=-9999.75\\a =-50 [m/s^{2} ]](https://tex.z-dn.net/?f=%280.5%29%5E%7B2%7D-%2810%29%5E%7B2%7D%20%3D%202%2Aa%2A%28100%29%5C%5C0.25-10000%3D200%2Aa%5C%5C200%2Aa%3D-9999.75%5C%5Ca%20%3D-50%20%5Bm%2Fs%5E%7B2%7D%20%5D)
The negative sign of acceleration means that the ship slows down its velocity in order to land.
Answer:
1050 kg
Explanation:
The formula for kinetic energy is:
KE (kinetic energy) = 1/2 × m × v² where <em>m</em> is the <em>mass in kg </em>and <em>v</em> is the velocity or <em>speed</em> of the object <em>in m/s</em>.
We can now substitute the values we know into this equation.
KE = 472 500 J and v = 30 m/s:
472 500 = 1/2 × m × 30²
Next, we can rearrange the equation to make m the subject and solve for m:
m = 472 500 ÷ (1/2 × 30²)
m = 472 500 ÷ 450
m = 1050 kg
Hope this helps!
500 ml = 0.5 liters. that's what i'm getting
hope it helps
Answer: 3 A
Explanation:
According to<u> Ohm's law</u>:
Where:
is the voltage
is the resistance of the resistor
is the electric current (the value we want to find)
Isolating
:


Finally:
