Answer:
The driver's average velocity is 82.35 km/h.
Explanation:
Given:
The motion of the driver can be divided into 3 parts:
i. Displacement of the driver in 1.5 hours = 135 km
ii. Rest for 45 minutes.
iii. Displacement in next 2 hours = 215 km
The direction of motion remains same (east).
Now, total displacement of the driver is, km.
Rest time is 45 minutes. Converting it to hours, we need to use the conversion factor hour.
So, 45 minutes in hours is equal to hours.
Now, total time taken for the complete journey is,
Average velocity is given as:
Therefore, the driver's average velocity is 82.35 km/h
Answer:
The planet will move from east to west for a couple of months in the night sky.
Explanation:
Retrograde motion is an optical effect due to the fact that Earth rotates more quickly than the planet that apparently has a retrograde motion in the sky.
For example, Saturn has a slower speed in its orbit around the Sun. That means that the Earth will pass it, and that will give the effect that the planet is moving backward. That same scenario can be seen between two cars on a highway, the faster car will see the slower car when it passes as it is moving for a short fragment of time in backward.
Remember that the planets in the night sky move from west to east, in the case of a planet with retrograde motion, it will move from east to west for a couple of months.
Answer:
273 Kelvin
Explanation:
If -273 Celsius is 0 Kelvin, then 273 Kelvin will be 0 Celsius.
Answer:
D
Explanation:
The amount of momentum that an object has is dependent upon two variables: how much stuff is moving and how fast the stuff is moving. Momentum depends upon the variables mass and velocity. In terms of an equation, the momentum of an object is equal to the mass of the object times the velocity of the object.
HOPE THIS HELPS :)
:D Anyla... <3
Answer:
Mc = 1920[lb*in]
Explanation:
Para poder solucionar este problema debemos realizar un análisis estático, por tal motivo lo primero es realizar un diagrama de cuerpo libre con las respectivas fuerzas actuando sobre la barra ABC. DE igual manera calcular la geometría de la configuración mostrada.
El diagrama de cuerpo libre se puede ver en la imagen adjunta, con la solución de este problema.
Lo primero es determinar el angulo t, el cual por medio de las propiedades del triangulo rectángulo se puede determinar.
Con este angulo (t) ya determinado, fijamos la atención en el triangulo BCD, este triangulo no es rectángulo, pero por medio de la ley de senos podemos determinar el angulo omega.
Después de determinar el angulo omega, restamos el angulo (t) para poder determinar el angulo (a).
Seguidamente realizamos una sumatoria de momentos alrededor del punto C, utilizado las respectivas fuerzas con los ángulos descompuestos.
El momento en el punto C es de 1920 [Lb*in].
Nota: ya que no se menciona la fuerza en el punto A, esta se desprecia y no se tiene en cuenta en los calculos. En la imagen adjunta se puede ver el procedimiento desarrollado.