Let x be the number of treats bought
Let y be the pounds of food bought
25= 2y+x
Given that she has buys 9 pounds of dog food:
25= 2(9)+x
25=18 +x
25-18 =x
7=x
With the money she has left over, she can buy 7 treats.
Hope I helped :)
Answer:
1. -7.5
2. $1
3. 40
Step-by-step explanation:
For number 1, it can be solved by using the PEMDAS method, or see explanation below:
6x - 4x - 36 = 6 - 2x
2x - 36= -2x + 6
4x + 36 = 6
4x = -30
x = -15/2 or -7.5
For number 2, substitute 3 into both equations:
f(x) =1.50(3) + 2.00
and
f(x) = 2.00(3) + 1.50
This would get $6.50 and $7.50, which, if subtracted, gets $1.
For number 3, do something similar to the previous problem. Substitute 3 for x. It would be 5(2^3), or 40.
Hope this helps!
Answer:
Scale factor for the drawing from actual park = 
Area of the actual park = 1200 cm²
Step-by-step explanation:
Length of the rectangular city park = 5 cm
Width of the rectangular park = 6 cm
Using scale factor 1 cm = 20 meters
Scale factor = 

Actual length = 5 × 20 = 100 meters
Actual width = 6 × 20 = 120 meters
Area of the rectangular park = length × width
= 100 × 120
= 1200 square meters
Therefore, Scale factor from actual length to the length in drawing = 1 : 20
Area of the rectangular park = 1200 square feet
Answer:
The probability that the maximum speed is at most 49 km/h is 0.8340.
Step-by-step explanation:
Let the random variable<em> </em><em>X</em> be defined as the maximum speed of a moped.
The random variable <em>X</em> is Normally distributed with mean, <em>μ</em> = 46.8 km/h and standard deviation, <em>σ</em> = 1.75 km/h.
To compute the probability of a Normally distributed random variable we first need to convert the raw score of the random variable to a standardized or <em>z</em>-score.
The formula to convert <em>X</em> into <em>z</em>-score is:

Compute the probability that the maximum speed is at most 49 km/h as follows:
Apply continuity correction:
P (X ≤ 49) = P (X < 49 - 0.50)
= P (X < 48.50)

*Use a <em>z</em>-table for the probability.
Thus, the probability that the maximum speed is at most 49 km/h is 0.8340.
8(x + 20) <span>≤ -25
hope that helps</span>