Answer:
Probability that the diameter of a selected bearing is greater than 111 millimeters is 0.1056.
Step-by-step explanation:
We are given that the diameters of ball bearings are distributed normally. The mean diameter is 106 millimeters and the standard deviation is 4 millimeters.
<em>Firstly, Let X = diameters of ball bearings</em>
The z score probability distribution for is given by;
Z =
~ N(0,1)
where,
= mean diameter = 106 millimeters
= standard deviation = 4 millimeter
Probability that the diameter of a selected bearing is greater than 111 millimeters is given by = P(X > 111 millimeters)
P(X > 111) = P(
>
) = P(Z > 1.25) = 1 - P(Z
1.25)
= 1 - 0.89435 = 0.1056
Therefore, probability that the diameter of a selected bearing is greater than 111 millimeters is 0.1056.

Value of the coefficient of the

term is
Value of the coefficient of the

term is
Value of the coefficient of the x term is
The value of the constant is
:)
The simplest form of 35/56
is 5/8
Answer:
-6.5 is a rational number.