Answer:
1. y=(x+3)^3. Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1). Zeros: x=2 multiplicity 2; x=1 multiplicity 1.
3. y=(2x+3)(x-1)^2. Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Step-by-step explanation:
1. y=(x+3)^3
![y=0\\ (x+3)^3=0\\ \sqrt[3]{(x+3)^3}=\sqrt[3]{0}\\ x+3=0\\ x+3-3=0-3\\ x=-3](https://tex.z-dn.net/?f=y%3D0%5C%5C%20%28x%2B3%29%5E3%3D0%5C%5C%20%5Csqrt%5B3%5D%7B%28x%2B3%29%5E3%7D%3D%5Csqrt%5B3%5D%7B0%7D%5C%5C%20x%2B3%3D0%5C%5C%20x%2B3-3%3D0-3%5C%5C%20x%3D-3)
Zero: x=-3 multiplicity 3.
2. y=(x-2)^2 (x-1)

Zeros: x=2 multiplicity 2; x=1 multiplicity 1
3. y=(2x+3)(x-1)^2

Zeros: x=-3/2 multiplicity 1; x=1 multiplicity 2.
Answer: x= - 3/4
Step-by-step explanation: too much to explain
Answer:
because it is not a whole number
Step-by-step explanation:
A=number of seats in section A
B=number of seats in section B
C=number of seats in section C
We can suggest this system of equations:
A+B+C=55,000
A=B+C ⇒A-B-C=0
28A+16B+12C=1,158,000
We solve this system of equations by Gauss Method.
1 1 1 55,000
1 -1 -1 0
28 16 12 1,158,000
1 1 1 55,000
0 -2 -2 -55,000 (R₂-R₁)
0 12 16 382,000 (28R₁-R₂)
1 1 1 55,000
0 -2 -2 -55,000
0 0 4 52,000 (6R₂+R₃)
Therefore:
4C=52,000
C=52,000/4
C=13,000
-2B-2(13,000)=-55,000
-2B-26,000=-55,000
-2B=-55,000+26,000
-2B=-29,000
B=-29,000 / -2
B=14,500.
A + 14,500+13,000=55,000
A+27,500=55,000
A=55,000-27,500
A=27,500.
Answer: there are 27,500 seats in section A, 14,500 seats in section B and 13,000 seats in section C.