1. The complex number 6 + 7i has
- real part 6;
- imaginary part 7.
2. The complex number 10 + 2i has
- real part 10;
- imaginary part 2.
3. When we add two complex numbers, we add real parts and imaginary parts separately:
(6+7i)+(10+2i)=(6+10)+(7+2)i=16+9i.
Answer: 16+9i
3(x + 2) > x
3x + 6 > x
3x - 3x + 6 > x - 3x
6 > -2x
6/-2 < -2x/-2
-3< x
(When dividing by a negative, reverse the direction of the inequality side, reverse it EVERY time you divide by a negative)
ANSWER: -3 < x
Answer:
24x^4+18x^3-15x^2 -42x-24
Step-by-step explanation:
(6x^2-3x-6)(4x^2 +5x+4)=
6x^2*4x^2 +6x^2*5x+6x^2*4
-3x*4x^2 - 3x*5x-3x*4
- 6*4x^2 -6*5x-6*4=
24x^4+30x^3+24x^2-12x^3-15x^2 -12x
-24x^2-30x-24=
24x^4+18x^3-15x^2 -42x-24