Hello there! So, y = mx + b is in slope-intercept form, where m represents the slope, b represents the y-intercept, and y and x remain unfilled. First off, let's solve for the slope. The formula for slope is y2 - y1 / x2 - x1, where you subtract the first x and y coordinates from the second x and y coordinates. So it would be formed like this:
9 - 4 / 6 - (-4)
Let's subtract. 9 - 4 is 5. 6 - (-4) is 10. 5/10 is 1/2 in simplest form. The slope for this equation is 1/2. Now, let's find the y-intercept. We will find that by plugging one of the points into the equation and solving for b. The x and y coordinates will be filled in by that coordinate. Let's use (-4, 4) for this problem. We will also plug in the slope. In this case, the problem will look like this:
4 = (1/2)(-4) + b
Now, let's multiply 1/2 and -4 to get -2. Now, to get b by itself, subtract 2 to both sides to isolate the b. -2 + 2 cancels out. 4 + 2 is 6. b = 6. There. The equation of the line in slope-intercept form is y = 1/2x + 6.
C adding a number to itself
Answer:
a. [ 0.454,0.51]
b. 599.472 ~ 600
Step-by-step explanation:
a)
Confidence Interval For Proportion
CI = p ± Z a/2 Sqrt(p*(1-p)/n)))
x = Mean
n = Sample Size
a = 1 - (Confidence Level/100)
Za/2 = Z-table value
CI = Confidence Interval
Mean(x)=410
Sample Size(n)=850
Sample proportion = x/n =0.482
Confidence Interval = [ 0.482 ±Z a/2 ( Sqrt ( 0.482*0.518) /850)]
= [ 0.482 - 1.645* Sqrt(0) , 0.482 + 1.65* Sqrt(0) ]
= [ 0.454,0.51]
b)
Compute Sample Size ( n ) = n=(Z/E)^2*p*(1-p)
Z a/2 at 0.05 is = 1.96
Samle Proportion = 0.482
ME = 0.04
n = ( 1.96 / 0.04 )^2 * 0.482*0.518
= 599.472 ~ 600
Answer:

Step-by-step explanation:
Given:

Let us assume that this equation is equal to 0.
Hence 
Now Solving the above equation we get,

Hence by solving the equation we get 
Answer:
8
Step-by-step explanation:
-12u and 12u cancel each other out. Leaving 8 by itself.